
The average depth of Indian Ocean is about 3000m. The value of fractional compression $\dfrac{\Delta V}{V}$ of water at the bottom of the ocean is: [Given that the bulk modulus of the water is $2.2\times 10^{9} N/m^{2},\;g=9.8m/s^{2}$ and $\rho_{water}=1000kg/m^{3}$]
\[\begin{align}
& A.3.4\times {{10}^{-2}} \\
& B.1.34\times {{10}^{-2}} \\
& C.4.13\times {{10}^{-2}} \\
& D.13.4\times {{10}^{-2}} \\
\end{align}\]
Answer
581.1k+ views
Hint: The bulk modulus is defined as the ratio of volumetric stress to volumetric strain of the substance, and degree of compression is the bulk modulus of elasticity i.e. $K=-\dfrac{\Delta P}{\dfrac{\Delta V}{V}}$. To find $\dfrac{\Delta V}{V}$
Formula used:
$K=\dfrac{Vol \;stress}{Vol\;Strain}$ or $K=-\dfrac{\Delta P}{\dfrac{\Delta V}{V}}$
Complete step by step answer:
We know that the Indian Ocean has salt water, which is dominantly liquid. Pressure is applied on water and it gets compressed. The degree of compression is the bulk modulus of elasticity. The bulk modulus is defined as the ratio of volumetric stress to volumetric strain of the substance, here water.
Then$K=\dfrac{Vol \;stress}{Vol\;Strain}$, where$K$ is a constant, which explains the elasticity of the fluid, water.
Then, $K=-\dfrac{\Delta P}{\dfrac{\Delta V}{V}}$ where $\Delta P$change in pressure is, $V$ is the initial volume and $\Delta V$ is the change in volume. Where –ve sign indicates that the substance is compressed.
Thus, $\dfrac{\Delta V}{V}=\dfrac{\Delta P}{K}$.
Given $K=2.2\times 10^{9} N/m^{2},\;g=9.8m/s^{2},\rho_{water}=1000kg/m^{3},h=3000m$
We can write $\Delta P=h\rho g$, assuming the initial height of the sea as $0$. Then the initial pressure is $0$ and change in pressure is the pressure at the final height$h$, clearly pressure varies with height and density of the material.
Then, substituting the values we get, $\dfrac{\Delta V}{V}=\dfrac{3\times 10^{3} \times 9.8\times 10^{3} }{2.2\times 10^{9}}=1.34\times 10^{-2}m$
Thus, the answer is B.$1.34\times 10^{-2}m$
Note:
Instead of giving the change in pressure, here, $h,\rho$ is given which is the only trick here. Then$\Delta P=h\rho g$, assuming the initial height of the sea as $0$. Then the initial pressure is $0$ and change in pressure is the pressure at the final height $h$, clearly pressure varies with height and density of the material. Also, in $K=-\dfrac{\Delta P}{\dfrac{\Delta V}{V}}$, –ve sign indicates that the substance is compressed.
Formula used:
$K=\dfrac{Vol \;stress}{Vol\;Strain}$ or $K=-\dfrac{\Delta P}{\dfrac{\Delta V}{V}}$
Complete step by step answer:
We know that the Indian Ocean has salt water, which is dominantly liquid. Pressure is applied on water and it gets compressed. The degree of compression is the bulk modulus of elasticity. The bulk modulus is defined as the ratio of volumetric stress to volumetric strain of the substance, here water.
Then$K=\dfrac{Vol \;stress}{Vol\;Strain}$, where$K$ is a constant, which explains the elasticity of the fluid, water.
Then, $K=-\dfrac{\Delta P}{\dfrac{\Delta V}{V}}$ where $\Delta P$change in pressure is, $V$ is the initial volume and $\Delta V$ is the change in volume. Where –ve sign indicates that the substance is compressed.
Thus, $\dfrac{\Delta V}{V}=\dfrac{\Delta P}{K}$.
Given $K=2.2\times 10^{9} N/m^{2},\;g=9.8m/s^{2},\rho_{water}=1000kg/m^{3},h=3000m$
We can write $\Delta P=h\rho g$, assuming the initial height of the sea as $0$. Then the initial pressure is $0$ and change in pressure is the pressure at the final height$h$, clearly pressure varies with height and density of the material.
Then, substituting the values we get, $\dfrac{\Delta V}{V}=\dfrac{3\times 10^{3} \times 9.8\times 10^{3} }{2.2\times 10^{9}}=1.34\times 10^{-2}m$
Thus, the answer is B.$1.34\times 10^{-2}m$
Note:
Instead of giving the change in pressure, here, $h,\rho$ is given which is the only trick here. Then$\Delta P=h\rho g$, assuming the initial height of the sea as $0$. Then the initial pressure is $0$ and change in pressure is the pressure at the final height $h$, clearly pressure varies with height and density of the material. Also, in $K=-\dfrac{\Delta P}{\dfrac{\Delta V}{V}}$, –ve sign indicates that the substance is compressed.
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

