Answer

Verified

404.1k+ views

**Hint:**In this case, we will take the coefficient of restitution to be zero as the balls are light in weight. The electric field generated inside the chamber can be taken as a parallel plate capacitor. We will find the relation of total charge and potential difference. After that we will find the relation of time and potential difference, using the equation of distance from one of the equations of the laws of motion.

**Formula used:**

The acceleration of a particle in an electric field is given by:

\[a = \dfrac{{Q \times E}}{m}\]

Where,

\[a\] indicates the acceleration.

\[Q\] indicates the charge of the particle.

\[E\] indicates the electric field.

\[m\] indicates the mass of the particle.

The electric field is given by:

\[E = \dfrac{V}{d}\]

Where,

\[V\] indicates potential difference.

\[d\] indicates distance.

**Complete step by step answer:**

In the given question, we are supplied with the following data:

There is a container which contains a number of balls. These balls are charged by a high potential. The balls are considered to be lightweight and they are coated with some conducting material. After the electric current is allowed to pass, the ball will also be positively charged along with the plate and they will be repelled by the plate.

Let us proceed to solve the problem. We assume the height of the container to be \[h\] .The total charge on the balls is \[Q\] .The voltage applied on the balls is \[{V_0}\] .We know that the charge on the balls is directly proportional to the voltage applied on the balls. Mathematically, we can write:

$Q \propto {V_0} \\

\Rightarrow Q = k{V_0} \\$

When the balls will bounce upwards, they will cover a distance of \[h\] .

So, we can now write:

$h = \dfrac{1}{2}a{t^2} \\

\Rightarrow h = \dfrac{1}{2} \times \dfrac{{Q \times E}}{m} \times {t^2} \\

\Rightarrow h = \dfrac{1}{2} \times \dfrac{{Q \times {V_0}}}{{m \times h}} \times {t^2} \\

\Rightarrow h = \dfrac{1}{2} \times \dfrac{{k{V_0} \times {V_0}}}{{m \times h}} \times {t^2} \\

\Rightarrow h = \dfrac{1}{2} \times \dfrac{{kV_0^2}}{{m \times h}} \times {t^2} \\

\Rightarrow {t^2} = \dfrac{{2{h^2}m}}{{kV_0^2}} \\

\Rightarrow t = \dfrac{{h\sqrt {2m} }}{{\sqrt k {V_0}}} \\$

Now, all the quantities are constant except \[t\] and \[{V_0}\] .

So, the relation becomes:

\[ \Rightarrow t \propto \dfrac{1}{{{V_0}}}\]

Again, we can write for the current:

${I_{{\text{avg}}}} \propto \dfrac{Q}{t} \\

\Rightarrow {I_{{\text{avg}}}} \propto \dfrac{{k{V_0}}}{{k \times \dfrac{1}{{{V_0}}}}} \\

\therefore {I_{{\text{avg}}}} \propto V_0^2 $

Hence, current is proportional to \[V_0^2\] .

**The correct option is A.**

**Note:**Remember that an electric field is an elegant way of characterizing a charging system's electrical environment. At any point in the space around a charging device, the electric field reflects the force that a positive unit test charge will feel if mounted at that point.

Recently Updated Pages

When people say No pun intended what does that mea class 8 english CBSE

Name the states which share their boundary with Indias class 9 social science CBSE

Give an account of the Northern Plains of India class 9 social science CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

Advantages and disadvantages of science

A Paragraph on Pollution in about 100-150 Words

Trending doubts

Which are the Top 10 Largest Countries of the World?

One cusec is equal to how many liters class 8 maths CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Give 10 examples for herbs , shrubs , climbers , creepers

Write a letter to the principal requesting him to grant class 10 english CBSE

What organs are located on the left side of your body class 11 biology CBSE