Answer
Verified
439.8k+ views
Hint: Sound waves that have frequencies within the range of 20Hz-20 KHz is called audible sound. Wavelength is inversely proportional to frequency. The relation between speed of sound, frequency of sound and its wavelength is given as, speed of sound is the product of wavelength and frequency of the sound.
Formula used:
$\lambda =\dfrac{v}{f}$, where ‘$\lambda $’ is the wavelength, ‘$v$’ is the velocity and ‘$f$’ is frequency.
Complete step by step answer:
The audible frequency of human beings is given in the question, 20 Hz to 20 KHz.
We have to find its wavelength when the speed of sound in air is 320 m/s.
Minimum audible frequency,
${{f}_{audible}}\left( \min \right)=20Hz$
Maximum audible frequency,
${{f}_{audible}}(\max )=20KHz$
Speed of sound in air,
$v=320m/s$
We have the equation for wavelength,
$\lambda =\dfrac{v}{f}$ , Where ‘$\lambda $’ is the wavelength of the sound, ‘$v$ ‘is velocity of sound and ‘$f$ ‘is the frequency of sound.
Let${{\lambda }_{1}}$ be the wavelength corresponding to minimum audible frequency.
Then,
$\begin{align}
& {{\lambda }_{1}}=\dfrac{v}{{{f}_{\min }}} \\
& {{\lambda }_{1}}=\dfrac{320}{20} \\
& {{\lambda }_{1}}=16m \\
\end{align}$
Now, let${{\lambda }_{2}}$ be the wavelength of maximum audible frequency
Then,
$\begin{align}
& {{\lambda }_{2}}=\dfrac{v}{{{f}_{\max }}} \\
& {{\lambda }_{2}}=\dfrac{320}{20KHz} \\
& {{\lambda }_{2}}=\dfrac{320}{20\times {{10}^{3}}} \\
& {{\lambda }_{2}}=16\times {{10}^{-3}}m \\
\end{align}$
Therefore the corresponding wavelength to minimum frequency $=16m$
Corresponding wavelength to maximum frequency, $=16\times {{10}^{-3}}m=16mm$.
Note:
From this we can see that, for a minimum frequency we get maximum wavelength. And for maximum frequency, the wavelength we get will be minimum. I.e. We verify that wavelength and frequency are inversely proportional to each other.
To convert Kilohertz to Hertz, we multiply Kilohertz by 1000
$1KHz=1000Hz$
To convert meter to millimeter, we multiply meter with 1000.
$1m=1000mm$
Formula used:
$\lambda =\dfrac{v}{f}$, where ‘$\lambda $’ is the wavelength, ‘$v$’ is the velocity and ‘$f$’ is frequency.
Complete step by step answer:
The audible frequency of human beings is given in the question, 20 Hz to 20 KHz.
We have to find its wavelength when the speed of sound in air is 320 m/s.
Minimum audible frequency,
${{f}_{audible}}\left( \min \right)=20Hz$
Maximum audible frequency,
${{f}_{audible}}(\max )=20KHz$
Speed of sound in air,
$v=320m/s$
We have the equation for wavelength,
$\lambda =\dfrac{v}{f}$ , Where ‘$\lambda $’ is the wavelength of the sound, ‘$v$ ‘is velocity of sound and ‘$f$ ‘is the frequency of sound.
Let${{\lambda }_{1}}$ be the wavelength corresponding to minimum audible frequency.
Then,
$\begin{align}
& {{\lambda }_{1}}=\dfrac{v}{{{f}_{\min }}} \\
& {{\lambda }_{1}}=\dfrac{320}{20} \\
& {{\lambda }_{1}}=16m \\
\end{align}$
Now, let${{\lambda }_{2}}$ be the wavelength of maximum audible frequency
Then,
$\begin{align}
& {{\lambda }_{2}}=\dfrac{v}{{{f}_{\max }}} \\
& {{\lambda }_{2}}=\dfrac{320}{20KHz} \\
& {{\lambda }_{2}}=\dfrac{320}{20\times {{10}^{3}}} \\
& {{\lambda }_{2}}=16\times {{10}^{-3}}m \\
\end{align}$
Therefore the corresponding wavelength to minimum frequency $=16m$
Corresponding wavelength to maximum frequency, $=16\times {{10}^{-3}}m=16mm$.
Note:
From this we can see that, for a minimum frequency we get maximum wavelength. And for maximum frequency, the wavelength we get will be minimum. I.e. We verify that wavelength and frequency are inversely proportional to each other.
To convert Kilohertz to Hertz, we multiply Kilohertz by 1000
$1KHz=1000Hz$
To convert meter to millimeter, we multiply meter with 1000.
$1m=1000mm$
Recently Updated Pages
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Advantages and disadvantages of science
Trending doubts
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference Between Plant Cell and Animal Cell
Which are the Top 10 Largest Countries of the World?
10 examples of evaporation in daily life with explanations
Give 10 examples for herbs , shrubs , climbers , creepers
Write a letter to the principal requesting him to grant class 10 english CBSE
Change the following sentences into negative and interrogative class 10 english CBSE