
The argument of \[\dfrac{{\left( {1 - i\sqrt 3 } \right)}}{{\left( {1 + i\sqrt 3 } \right)}}\] is
A.\[60^\circ \]
B.\[120^\circ \]
C.\[210^\circ \]
D.\[240^\circ \]
Answer
582.9k+ views
Hint: First we will first rationalize the given expression by multiplying numerator and denominator by \[1 + i\sqrt 3 \]. Then use the property, \[{a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right)\] in the denominator and \[{\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2}\]in the numerator of the obtained equation to simplify it. Then we will use the trigonometric values to find the argument.
Complete step-by-step answer:
We are given \[\dfrac{{\left( {1 - i\sqrt 3 } \right)}}{{\left( {1 + i\sqrt 3 } \right)}}\].
Let us assume that \[z = \dfrac{{\left( {1 - i\sqrt 3 } \right)}}{{\left( {1 + i\sqrt 3 } \right)}}\].
Rationalizing the given expression by multiplying numerator and denominator by \[1 + i\sqrt 3 \], we get
\[
\Rightarrow z = \dfrac{{\left( {1 - i\sqrt 3 } \right)}}{{\left( {1 + i\sqrt 3 } \right)}} \times \dfrac{{\left( {1 - i\sqrt 3 } \right)}}{{\left( {1 - i\sqrt 3 } \right)}} \\
\Rightarrow z = \dfrac{{{{\left( {1 - i\sqrt 3 } \right)}^2}}}{{\left( {1 + i\sqrt 3 } \right)\left( {1 - i\sqrt 3 } \right)}} \\
\]
Using the property, \[{a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right)\] in the denominator and \[{\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2}\]in the numerator of the above equation, we get
\[
\Rightarrow z = \dfrac{{{1^2} - 2 \times 1 \times i\sqrt 3 + {{\left( {i\sqrt 3 } \right)}^2}}}{{{1^2} - {{\left( {i\sqrt 3 } \right)}^2}}} \\
\Rightarrow z = \dfrac{{1 - 2i\sqrt 3 + 3{i^2}}}{{1 - 3{i^2}}} \\
\]
Using the property of complex number \[{i^2} = - 1\] in the above equation, we get
\[
\Rightarrow z = \dfrac{{1 - 2i\sqrt 3 + 3\left( { - 1} \right)}}{{1 - 3\left( { - 1} \right)}} \\
\Rightarrow z = \dfrac{{1 - 2i\sqrt 3 - 3}}{{1 + 3}} \\
\Rightarrow z = \dfrac{{ - 2i\sqrt 3 - 2}}{4} \\
\]
Taking 2 common from the numerator in the above equation, we get
\[
\Rightarrow z = \dfrac{{2\left( { - i\sqrt 3 - 1} \right)}}{4} \\
\Rightarrow z = \dfrac{{ - i\sqrt 3 - 1}}{2} \\
\Rightarrow z = - \dfrac{{i\sqrt 3 }}{2} - \dfrac{1}{2} \\
\]
We know that the standard equation for the complex number \[z\] is \[\cos \theta + i\sin \theta \].
Using the standard equation and the trigonometric values, \[\sin 240^\circ = - \dfrac{{\sqrt 3 }}{2}\] and \[\cos 240^\circ = - \dfrac{1}{2}\] in the above expression, we get
\[ \Rightarrow \cos 240^\circ + i\sin 240^\circ \]
Thus, the argument of the given expression is \[240^\circ \].
Hence, option D is correct.
Note: In solving these types of questions, students should know the basic properties and values of trigonometric functions. Since \[ - \dfrac{{\sqrt 3 }}{2}\] and \[ - \dfrac{1}{2}\] are both negative values, it lies in the fourth quadrant.
Complete step-by-step answer:
We are given \[\dfrac{{\left( {1 - i\sqrt 3 } \right)}}{{\left( {1 + i\sqrt 3 } \right)}}\].
Let us assume that \[z = \dfrac{{\left( {1 - i\sqrt 3 } \right)}}{{\left( {1 + i\sqrt 3 } \right)}}\].
Rationalizing the given expression by multiplying numerator and denominator by \[1 + i\sqrt 3 \], we get
\[
\Rightarrow z = \dfrac{{\left( {1 - i\sqrt 3 } \right)}}{{\left( {1 + i\sqrt 3 } \right)}} \times \dfrac{{\left( {1 - i\sqrt 3 } \right)}}{{\left( {1 - i\sqrt 3 } \right)}} \\
\Rightarrow z = \dfrac{{{{\left( {1 - i\sqrt 3 } \right)}^2}}}{{\left( {1 + i\sqrt 3 } \right)\left( {1 - i\sqrt 3 } \right)}} \\
\]
Using the property, \[{a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right)\] in the denominator and \[{\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2}\]in the numerator of the above equation, we get
\[
\Rightarrow z = \dfrac{{{1^2} - 2 \times 1 \times i\sqrt 3 + {{\left( {i\sqrt 3 } \right)}^2}}}{{{1^2} - {{\left( {i\sqrt 3 } \right)}^2}}} \\
\Rightarrow z = \dfrac{{1 - 2i\sqrt 3 + 3{i^2}}}{{1 - 3{i^2}}} \\
\]
Using the property of complex number \[{i^2} = - 1\] in the above equation, we get
\[
\Rightarrow z = \dfrac{{1 - 2i\sqrt 3 + 3\left( { - 1} \right)}}{{1 - 3\left( { - 1} \right)}} \\
\Rightarrow z = \dfrac{{1 - 2i\sqrt 3 - 3}}{{1 + 3}} \\
\Rightarrow z = \dfrac{{ - 2i\sqrt 3 - 2}}{4} \\
\]
Taking 2 common from the numerator in the above equation, we get
\[
\Rightarrow z = \dfrac{{2\left( { - i\sqrt 3 - 1} \right)}}{4} \\
\Rightarrow z = \dfrac{{ - i\sqrt 3 - 1}}{2} \\
\Rightarrow z = - \dfrac{{i\sqrt 3 }}{2} - \dfrac{1}{2} \\
\]
We know that the standard equation for the complex number \[z\] is \[\cos \theta + i\sin \theta \].
Using the standard equation and the trigonometric values, \[\sin 240^\circ = - \dfrac{{\sqrt 3 }}{2}\] and \[\cos 240^\circ = - \dfrac{1}{2}\] in the above expression, we get
\[ \Rightarrow \cos 240^\circ + i\sin 240^\circ \]
Thus, the argument of the given expression is \[240^\circ \].
Hence, option D is correct.
Note: In solving these types of questions, students should know the basic properties and values of trigonometric functions. Since \[ - \dfrac{{\sqrt 3 }}{2}\] and \[ - \dfrac{1}{2}\] are both negative values, it lies in the fourth quadrant.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

