
The area of the pentagon whose vertices are (4,1), (3,6), (-5,1), (-3,-3) and (-3,0) is
A.30 sq. units
B.60 sq. units
C.120 sq. units
D.None of these
Answer
579.6k+ views
Hint: We are given the coordinates of all the five points, we use the formula of area of pentagon which is
Area of the pentagon \[ = \dfrac{1}{2}\left| {\sum {{x_n}{y_{n + 1}} - {y_n}{x_{n + 1}}} } \right|\]; where n = 1, 2, 3, 4, 5. We substitute the values and find the area.
Complete step-by-step answer:
Pentagon is a plane figure with five straight sides and five angles.
Here, the given vertices are (4,1), (3,6), (-5,1), (-3,-3) and (-3,0).
Now, Let,
\[\left( {{x_1},{y_1}} \right)\]=(4,1)
\[\left( {{x_2},{y_2}} \right)\]=(3,6)
\[\left( {{x_3},{y_3}} \right)\]=(-5,1)
\[\left( {{x_4},{y_4}} \right)\]=(-3,-3)
\[\left( {{x_5},{y_5}} \right)\]=(-3,0)
Now, apply the formula of area of a pentagon, which is
\[ = \dfrac{1}{2}\left| {\sum {{x_n}{y_{n + 1}} - {y_n}{x_{n + 1}}} } \right|\]; where n = 1, 2, 3, 4, 5
\[ = \dfrac{1}{2}\left| {\left( {{x_1}{y_2} + {x_2}{y_3} + {x_3}{y_4} + {x_4}{y_5} + {x_5}{y_1}} \right) - \left( {{y_1}{x_2} + {y_2}{x_3} + {y_3}{x_4} + {y_4}{x_5} + {y_5}{x_1}} \right)} \right|\]
Putting the values of xi and yi where i = 1, 2, 3, 4, 5 in the formula we get
\[
A = \dfrac{1}{2}\left| {\left( {4 \times 6 + 3 \times 1 + \left( { - 5} \right) \times \left( { - 3} \right) + \left( { - 3} \right) \times 0 + \left( { - 3} \right) \times 1} \right) - \left( {1 \times 3 + 6 \times \left( { - 5} \right) + 1 \times \left( { - 3} \right) + \left( { - 3} \right) \times \left( { - 3} \right) + 0 \times 4} \right)} \right|{\text{ }}sq.{\text{ }}units \\
= \dfrac{1}{2}\left| {\left( {24 + 3 + 15 + 0 - 3} \right) - \left( {3 - 30 - 3 + 9 + 0} \right)} \right|{\text{ }}sq.{\text{ }}units \\
= \dfrac{1}{2}\left| {39 + 21} \right|{\text{ }}sq.{\text{ }}units \\
= \dfrac{1}{2}\left| {60} \right|{\text{ }}sq.{\text{ }}units \\
= 30{\text{ }}sq.{\text{ }}units \\
\]
Hence, the area of the pentagon is 30 sq. units .
Hence, the correct option is (A).
Note: 1. A pentagon is any five –sided polygon. Sometimes it is called 5-gon. The sum of the angles in a simple pentagon is \[540^\circ \].
2.The formula given below is also valid for all polygons ,
\[A = \dfrac{1}{2}\left| {\left( {{x_1}{y_2} + {x_2}{y_3} + {x_3}{y_4} + ..... + {x_{n - 1}}{y_n} + {x_n}{y_1}} \right) - \left( {{y_1}{x_2} + {y_2}{x_3} + {y_3}{x_4} + ..... + {y_{n - 1}}{x_n} + {y_n}{x_1}} \right)} \right|\]
Area of the pentagon \[ = \dfrac{1}{2}\left| {\sum {{x_n}{y_{n + 1}} - {y_n}{x_{n + 1}}} } \right|\]; where n = 1, 2, 3, 4, 5. We substitute the values and find the area.
Complete step-by-step answer:
Pentagon is a plane figure with five straight sides and five angles.
Here, the given vertices are (4,1), (3,6), (-5,1), (-3,-3) and (-3,0).
Now, Let,
\[\left( {{x_1},{y_1}} \right)\]=(4,1)
\[\left( {{x_2},{y_2}} \right)\]=(3,6)
\[\left( {{x_3},{y_3}} \right)\]=(-5,1)
\[\left( {{x_4},{y_4}} \right)\]=(-3,-3)
\[\left( {{x_5},{y_5}} \right)\]=(-3,0)
Now, apply the formula of area of a pentagon, which is
\[ = \dfrac{1}{2}\left| {\sum {{x_n}{y_{n + 1}} - {y_n}{x_{n + 1}}} } \right|\]; where n = 1, 2, 3, 4, 5
\[ = \dfrac{1}{2}\left| {\left( {{x_1}{y_2} + {x_2}{y_3} + {x_3}{y_4} + {x_4}{y_5} + {x_5}{y_1}} \right) - \left( {{y_1}{x_2} + {y_2}{x_3} + {y_3}{x_4} + {y_4}{x_5} + {y_5}{x_1}} \right)} \right|\]
Putting the values of xi and yi where i = 1, 2, 3, 4, 5 in the formula we get
\[
A = \dfrac{1}{2}\left| {\left( {4 \times 6 + 3 \times 1 + \left( { - 5} \right) \times \left( { - 3} \right) + \left( { - 3} \right) \times 0 + \left( { - 3} \right) \times 1} \right) - \left( {1 \times 3 + 6 \times \left( { - 5} \right) + 1 \times \left( { - 3} \right) + \left( { - 3} \right) \times \left( { - 3} \right) + 0 \times 4} \right)} \right|{\text{ }}sq.{\text{ }}units \\
= \dfrac{1}{2}\left| {\left( {24 + 3 + 15 + 0 - 3} \right) - \left( {3 - 30 - 3 + 9 + 0} \right)} \right|{\text{ }}sq.{\text{ }}units \\
= \dfrac{1}{2}\left| {39 + 21} \right|{\text{ }}sq.{\text{ }}units \\
= \dfrac{1}{2}\left| {60} \right|{\text{ }}sq.{\text{ }}units \\
= 30{\text{ }}sq.{\text{ }}units \\
\]
Hence, the area of the pentagon is 30 sq. units .
Hence, the correct option is (A).
Note: 1. A pentagon is any five –sided polygon. Sometimes it is called 5-gon. The sum of the angles in a simple pentagon is \[540^\circ \].
2.The formula given below is also valid for all polygons ,
\[A = \dfrac{1}{2}\left| {\left( {{x_1}{y_2} + {x_2}{y_3} + {x_3}{y_4} + ..... + {x_{n - 1}}{y_n} + {x_n}{y_1}} \right) - \left( {{y_1}{x_2} + {y_2}{x_3} + {y_3}{x_4} + ..... + {y_{n - 1}}{x_n} + {y_n}{x_1}} \right)} \right|\]
Recently Updated Pages
Master Class 9 Social Science: Engaging Questions & Answers for Success

Master Class 9 Science: Engaging Questions & Answers for Success

Master Class 9 English: Engaging Questions & Answers for Success

Master Class 9 Maths: Engaging Questions & Answers for Success

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Class 9 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Which places in India experience sunrise first and class 9 social science CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Write the 6 fundamental rights of India and explain in detail

Difference Between Plant Cell and Animal Cell

What is pollution? How many types of pollution? Define it

What is the Full Form of ISI and RAW

