
The area of parallelogram whose diagonals represent the vector \[3\mathop i\limits^ \to {\text{ + }}\mathop j\limits^ \to - 2\mathop {k{\text{ }}}\limits^ \to and{\text{ }}\mathop i\limits^ \to {\text{ + }}\mathop j\limits^ \to + 4\mathop {k{\text{ }}}\limits^ \to is\]
(A) $10\sqrt 3 $
(B) $5\sqrt 3 $
(C) $8$
(D) $4$
Answer
550.5k+ views
Hint: We have given the position vectors of the diagonals of parallelogram. We have to find the area of parallelogram. Firstly we consider the position vectors of parallelograms as $\mathop a\limits^ \to $ and $\mathop b\limits^ \to $ and we find the cross. Product of these two vectors. The cross product will also be a vector. There we calculate will also be a vector. Then we calculate the magnitude of the resulting vector. Now area a of the parallelogram is given as half the magnitude of cross product of $\mathop a\limits^ \to $ a and $\mathop b\limits^ \to $that is Area of parallelogram \[ = \dfrac{1}{2} \times |\mathop a\limits^ \to \times \mathop b\limits^ \to |\]
Complete step-by-step answer:
The position vectors of diagonal of parallelogram is \[3\mathop i\limits^\Lambda {\text{ + }}\mathop j\limits^\Lambda - 2\mathop {k{\text{ }}}\limits^\Lambda and{\text{ }}\mathop i\limits^\Lambda {\text{ + 3}}\mathop j\limits^\Lambda + 4\mathop {k{\text{ }}}\limits^\Lambda \]
Let us consider that \[\mathop a\limits^ \to = 3\mathop i\limits^\Lambda {\text{ + }}\mathop j\limits^\Lambda - 2\mathop {k{\text{ }}}\limits^\Lambda \]and
\[\mathop b\limits^ \to = \mathop i\limits^\Lambda {\text{ + }}\mathop j\limits^\Lambda + 4\mathop {k{\text{ }}}\limits^\Lambda \]
We have to find the area of parallelogram
\[\begin{gathered}
\to \mathop a\limits^ \to = 3\mathop i\limits^\Lambda {\text{ + }}\mathop j\limits^\Lambda - 2\mathop {k{\text{ }}}\limits^\Lambda \\
\to \mathop b\limits^ \to = \mathop i\limits^\Lambda {\text{ + 3}}\mathop j\limits^\Lambda + 4\mathop {k{\text{ }}}\limits^\Lambda \\
\end{gathered} \]
Area of parallelogram is given as $ = \dfrac{1}{2}|\mathop a\limits^ \to \times \mathop b\limits^ \to |$
So firstly we have to calculate the cross product of $\mathop a\limits^ \to $ and $\mathop b\limits^ \to $ there we calculate its magnitude.
Cross product of $\mathop a\limits^ \to $ a and $\mathop b\limits^ \to $ is given as
$\mathop a\limits^ \to \times \mathop b\limits^ \to = $ \[\left| \begin{gathered}
{\text{ }}\mathop i\limits^\Lambda {\text{ }}\mathop j\limits^\Lambda {\text{ }}\mathop {k{\text{ }}}\limits^\Lambda \\
{\text{ }}3{\text{ }}1{\text{ }} - 2 \\
{\text{ }}1{\text{ }} - 3{\text{ }}4 \\
\end{gathered} \right|\]
Expanding corresponding to first How we get
$\mathop a\limits^ \to \times \mathop b\limits^ \to = $\[\mathop i\limits^\Lambda (4 - 6) - \mathop j\limits^\Lambda (12 + 2) + 2\mathop k\limits^\Lambda ( - 9 - 1)\]
$\Rightarrow \mathop a\limits^ \to \times \mathop b\limits^ \to = $\[ - 2\mathop i\limits^\Lambda - 14\mathop j\limits^\Lambda - 10\mathop k\limits^\Lambda \]
So $\mathop a\limits^ \to \times \mathop b\limits^ \to = $\[ - 2\mathop i\limits^\Lambda - 14\mathop j\limits^\Lambda - 10\mathop k\limits^\Lambda \]
Now we calculate the magnitude of $\mathop a\limits^ \to \times \mathop b\limits^ \to $Magnitude of $\mathop a\limits^ \to \times \mathop b\limits^ \to $ is given as
$\left| {\mathop a\limits^ \to \times \mathop b\limits^ \to } \right|$ \[ = \sqrt {{{\left( { - 2} \right)}^2} + {{(14)}^2} + {{( - 10)}^2}} \]
\[ \Rightarrow \sqrt {4 + 16 + 100} = \sqrt {300} \]
$\Rightarrow \left| {\mathop a\limits^ \to \times \mathop b\limits^ \to } \right|$\[ = \sqrt {300} = 10\sqrt 3 \]
So magnitude of $\mathop a\limits^ \to \times \mathop b\limits^ \to = $$\left| {\mathop a\limits^ \to \times \mathop b\limits^ \to } \right|$\[ = 10\sqrt 3 \] square units
Area of parallelogram $ = \dfrac{1}{2}|\mathop a\limits^ \to \times \mathop b\limits^ \to |$
$ \Rightarrow \dfrac{1}{2}10\sqrt 3 = 5\sqrt 3 $ square units
So option $(B)$ is correct.
Note: Parallelogram is a quadrilateral. whose opposite sides are parallel to each other and opposite angles are equal Diagonal of parallelogram are the line segments whose joins their opposite vertex. The diagonal of parallelograms bisects each other. Cross product is a binary. Operation ovary two vectors in their dimension space. The cross product of two vectors is also a vector whose direction is perpendicular to the plane in which the vector is.
Complete step-by-step answer:
The position vectors of diagonal of parallelogram is \[3\mathop i\limits^\Lambda {\text{ + }}\mathop j\limits^\Lambda - 2\mathop {k{\text{ }}}\limits^\Lambda and{\text{ }}\mathop i\limits^\Lambda {\text{ + 3}}\mathop j\limits^\Lambda + 4\mathop {k{\text{ }}}\limits^\Lambda \]
Let us consider that \[\mathop a\limits^ \to = 3\mathop i\limits^\Lambda {\text{ + }}\mathop j\limits^\Lambda - 2\mathop {k{\text{ }}}\limits^\Lambda \]and
\[\mathop b\limits^ \to = \mathop i\limits^\Lambda {\text{ + }}\mathop j\limits^\Lambda + 4\mathop {k{\text{ }}}\limits^\Lambda \]
We have to find the area of parallelogram
\[\begin{gathered}
\to \mathop a\limits^ \to = 3\mathop i\limits^\Lambda {\text{ + }}\mathop j\limits^\Lambda - 2\mathop {k{\text{ }}}\limits^\Lambda \\
\to \mathop b\limits^ \to = \mathop i\limits^\Lambda {\text{ + 3}}\mathop j\limits^\Lambda + 4\mathop {k{\text{ }}}\limits^\Lambda \\
\end{gathered} \]
Area of parallelogram is given as $ = \dfrac{1}{2}|\mathop a\limits^ \to \times \mathop b\limits^ \to |$
So firstly we have to calculate the cross product of $\mathop a\limits^ \to $ and $\mathop b\limits^ \to $ there we calculate its magnitude.
Cross product of $\mathop a\limits^ \to $ a and $\mathop b\limits^ \to $ is given as
$\mathop a\limits^ \to \times \mathop b\limits^ \to = $ \[\left| \begin{gathered}
{\text{ }}\mathop i\limits^\Lambda {\text{ }}\mathop j\limits^\Lambda {\text{ }}\mathop {k{\text{ }}}\limits^\Lambda \\
{\text{ }}3{\text{ }}1{\text{ }} - 2 \\
{\text{ }}1{\text{ }} - 3{\text{ }}4 \\
\end{gathered} \right|\]
Expanding corresponding to first How we get
$\mathop a\limits^ \to \times \mathop b\limits^ \to = $\[\mathop i\limits^\Lambda (4 - 6) - \mathop j\limits^\Lambda (12 + 2) + 2\mathop k\limits^\Lambda ( - 9 - 1)\]
$\Rightarrow \mathop a\limits^ \to \times \mathop b\limits^ \to = $\[ - 2\mathop i\limits^\Lambda - 14\mathop j\limits^\Lambda - 10\mathop k\limits^\Lambda \]
So $\mathop a\limits^ \to \times \mathop b\limits^ \to = $\[ - 2\mathop i\limits^\Lambda - 14\mathop j\limits^\Lambda - 10\mathop k\limits^\Lambda \]
Now we calculate the magnitude of $\mathop a\limits^ \to \times \mathop b\limits^ \to $Magnitude of $\mathop a\limits^ \to \times \mathop b\limits^ \to $ is given as
$\left| {\mathop a\limits^ \to \times \mathop b\limits^ \to } \right|$ \[ = \sqrt {{{\left( { - 2} \right)}^2} + {{(14)}^2} + {{( - 10)}^2}} \]
\[ \Rightarrow \sqrt {4 + 16 + 100} = \sqrt {300} \]
$\Rightarrow \left| {\mathop a\limits^ \to \times \mathop b\limits^ \to } \right|$\[ = \sqrt {300} = 10\sqrt 3 \]
So magnitude of $\mathop a\limits^ \to \times \mathop b\limits^ \to = $$\left| {\mathop a\limits^ \to \times \mathop b\limits^ \to } \right|$\[ = 10\sqrt 3 \] square units
Area of parallelogram $ = \dfrac{1}{2}|\mathop a\limits^ \to \times \mathop b\limits^ \to |$
$ \Rightarrow \dfrac{1}{2}10\sqrt 3 = 5\sqrt 3 $ square units
So option $(B)$ is correct.
Note: Parallelogram is a quadrilateral. whose opposite sides are parallel to each other and opposite angles are equal Diagonal of parallelogram are the line segments whose joins their opposite vertex. The diagonal of parallelograms bisects each other. Cross product is a binary. Operation ovary two vectors in their dimension space. The cross product of two vectors is also a vector whose direction is perpendicular to the plane in which the vector is.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

