
The angle between the lines 2x = 3y = – z and 6x = -y = -4z is:
A.0°
B.90°
C.45°
D.30°
Answer
573.6k+ views
Hint: We will simplify the given equation of lines in the standard form of $\dfrac{x}{a} = \dfrac{y}{b} = \dfrac{z}{c}$ where a, b and c are the direction ratios of the line. We will calculate the angle between these lines using the formula cos$\theta $= $\dfrac{{{a_1}{a_2} + {b_1}{b_2} + {c_1}{c_2}}}{{\sqrt {a_1^2 + b_1^2 + c_1^2} \sqrt {a_2^2 + b_2^2 + c_2^2} }}$ .
Complete step-by-step answer:
we are given two lines as 2x = 3y = – z and 6x = -y = -4z
We can write them in standard form $\dfrac{x}{a} = \dfrac{y}{b} = \dfrac{z}{c}$as:
For 2x = 3y = – z $ \Rightarrow \dfrac{x}{{1/2}} = \dfrac{y}{{1/3}} = \dfrac{z}{{ - 1}}$
Comparing this equation with the standard equation, we get the direction ratios of this line as:
$a_1$ = $\dfrac{1}{2}$, $b_1$ = $\dfrac{1}{3}$, $c_1$ = -1
For 6x = -y = -4z $ \Rightarrow \dfrac{x}{{1/6}} = \dfrac{y}{{ - 1}} = \dfrac{z}{{ - 1/4}}$
Comparing this equation with the standard equation, we get the direction ratios of this line as:
$a_2$ = $\dfrac{1}{6}$ , $b_2$ = -1, $c_2$ = $\dfrac{{ - 1}}{4}$
Now, putting these values of $a_1$, $a_2$, $b_1$, $b_2$, $c_1$, and $c_2$ in the equation of cos$\theta $, we get
$
\Rightarrow \cos \theta = \dfrac{{{a_1}{a_2} + {b_1}{b_2} + {c_1}{c_2}}}{{\sqrt {a_1^2 + b_1^2 + c_1^2} \sqrt {a_2^2 + b_2^2 + c_2^2} }} \\
\Rightarrow \cos \theta = \dfrac{{\dfrac{1}{2} \cdot \dfrac{1}{6} + \dfrac{1}{3} \cdot ( - 1) + ( - 1)\dfrac{{\left( { - 1} \right)}}{4}}}{{\sqrt {{{\left( {\dfrac{1}{2}} \right)}^2} + {{\left( {\dfrac{1}{3}} \right)}^2} + {{\left( { - 1} \right)}^2}} \sqrt {{{\left( {\dfrac{1}{6}} \right)}^2} + {{\left( { - 1} \right)}^2} + {{\left( {\dfrac{{ - 1}}{4}} \right)}^2}} }} \\
$
Upon simplifying this expression, we get
$ \Rightarrow \cos \theta = \dfrac{{\dfrac{1}{{12}} - \dfrac{1}{3} + \dfrac{1}{4}}}{{\sqrt {{{\left( {\dfrac{1}{2}} \right)}^2} + {{\left( {\dfrac{1}{3}} \right)}^2} + {{\left( { - 1} \right)}^2}} \sqrt {{{\left( {\dfrac{1}{6}} \right)}^2} + {{\left( { - 1} \right)}^2} + {{\left( {\dfrac{{ - 1}}{4}} \right)}^2}} }} = \dfrac{{\dfrac{1}{{12}} - \dfrac{1}{{12}}}}{{\sqrt {{{\left( {\dfrac{1}{2}} \right)}^2} + {{\left( {\dfrac{1}{3}} \right)}^2} + {{\left( { - 1} \right)}^2}} \sqrt {{{\left( {\dfrac{1}{6}} \right)}^2} + {{\left( { - 1} \right)}^2} + {{\left( {\dfrac{{ - 1}}{4}} \right)}^2}} }} = 0$
$ \Rightarrow \cos \theta = 0$
Operating ${\cos ^{ - 1}}$both sides, we get
$
\Rightarrow {\cos ^{ - 1}}\left( {\cos \theta } \right) = {\cos ^{ - 1}}\left( 0 \right) \\
\Rightarrow \theta = {90^ \circ } \\
$
($\because {\cos ^{ - 1}}$ 0 = 90$^ \circ $)
Therefore, the angle between the lines 2x = 3y = – z and 6x = -y = -4z is 90$^ \circ $.
Hence, option (B) is correct.
Note: In such questions, you may get confused in the selection of the formula for calculating the angle between the given pair of the lines. Be careful in determining the direction ratios of the lines and after that, in the simplification of the expression of cos$\theta $ by putting the values of the obtained direction ratios.
Complete step-by-step answer:
we are given two lines as 2x = 3y = – z and 6x = -y = -4z
We can write them in standard form $\dfrac{x}{a} = \dfrac{y}{b} = \dfrac{z}{c}$as:
For 2x = 3y = – z $ \Rightarrow \dfrac{x}{{1/2}} = \dfrac{y}{{1/3}} = \dfrac{z}{{ - 1}}$
Comparing this equation with the standard equation, we get the direction ratios of this line as:
$a_1$ = $\dfrac{1}{2}$, $b_1$ = $\dfrac{1}{3}$, $c_1$ = -1
For 6x = -y = -4z $ \Rightarrow \dfrac{x}{{1/6}} = \dfrac{y}{{ - 1}} = \dfrac{z}{{ - 1/4}}$
Comparing this equation with the standard equation, we get the direction ratios of this line as:
$a_2$ = $\dfrac{1}{6}$ , $b_2$ = -1, $c_2$ = $\dfrac{{ - 1}}{4}$
Now, putting these values of $a_1$, $a_2$, $b_1$, $b_2$, $c_1$, and $c_2$ in the equation of cos$\theta $, we get
$
\Rightarrow \cos \theta = \dfrac{{{a_1}{a_2} + {b_1}{b_2} + {c_1}{c_2}}}{{\sqrt {a_1^2 + b_1^2 + c_1^2} \sqrt {a_2^2 + b_2^2 + c_2^2} }} \\
\Rightarrow \cos \theta = \dfrac{{\dfrac{1}{2} \cdot \dfrac{1}{6} + \dfrac{1}{3} \cdot ( - 1) + ( - 1)\dfrac{{\left( { - 1} \right)}}{4}}}{{\sqrt {{{\left( {\dfrac{1}{2}} \right)}^2} + {{\left( {\dfrac{1}{3}} \right)}^2} + {{\left( { - 1} \right)}^2}} \sqrt {{{\left( {\dfrac{1}{6}} \right)}^2} + {{\left( { - 1} \right)}^2} + {{\left( {\dfrac{{ - 1}}{4}} \right)}^2}} }} \\
$
Upon simplifying this expression, we get
$ \Rightarrow \cos \theta = \dfrac{{\dfrac{1}{{12}} - \dfrac{1}{3} + \dfrac{1}{4}}}{{\sqrt {{{\left( {\dfrac{1}{2}} \right)}^2} + {{\left( {\dfrac{1}{3}} \right)}^2} + {{\left( { - 1} \right)}^2}} \sqrt {{{\left( {\dfrac{1}{6}} \right)}^2} + {{\left( { - 1} \right)}^2} + {{\left( {\dfrac{{ - 1}}{4}} \right)}^2}} }} = \dfrac{{\dfrac{1}{{12}} - \dfrac{1}{{12}}}}{{\sqrt {{{\left( {\dfrac{1}{2}} \right)}^2} + {{\left( {\dfrac{1}{3}} \right)}^2} + {{\left( { - 1} \right)}^2}} \sqrt {{{\left( {\dfrac{1}{6}} \right)}^2} + {{\left( { - 1} \right)}^2} + {{\left( {\dfrac{{ - 1}}{4}} \right)}^2}} }} = 0$
$ \Rightarrow \cos \theta = 0$
Operating ${\cos ^{ - 1}}$both sides, we get
$
\Rightarrow {\cos ^{ - 1}}\left( {\cos \theta } \right) = {\cos ^{ - 1}}\left( 0 \right) \\
\Rightarrow \theta = {90^ \circ } \\
$
($\because {\cos ^{ - 1}}$ 0 = 90$^ \circ $)
Therefore, the angle between the lines 2x = 3y = – z and 6x = -y = -4z is 90$^ \circ $.
Hence, option (B) is correct.
Note: In such questions, you may get confused in the selection of the formula for calculating the angle between the given pair of the lines. Be careful in determining the direction ratios of the lines and after that, in the simplification of the expression of cos$\theta $ by putting the values of the obtained direction ratios.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

