
The A.M. of a set of 50 numbers is 38. If two numbers of the set, namely 55 and 45 are discarded, the A.M. of the remaining set of numbers is:
A) 36
B) \[36.5\]
C) \[37.5\]
D) \[38.5\]
Answer
547.2k+ views
Hint:
Here we will find the A.M (Arithmetic Mean) of the remaining numbers by using the data given to us. We will find the sum of all the numbers by using the A.M formula and then subtract the two numbers which are discarded from it. Then we will divide the new sum by the remaining numbers to get the new A.M.
Formula used:
A.M\[ = \dfrac{1}{n}\sum\limits_{i = 1}^n {{a_i}} \], where, A.M is Arithmetic Mean, \[n\] is number of values and \[{a_i}\] is the data set of values
Complete step by step solution:
We know that A.M of 50 given numbers is 38.
Let the sum of 50 numbers be \[x\].
Therefore, using the formula of arithmetic mean, we get
A.M \[ = \dfrac{x}{{50}}\]
\[ \Rightarrow 38 = \dfrac{x}{{50}}\]\[\]
On cross multiplication, we get
\[ \Rightarrow x = 38 \times 50\]
\[ \Rightarrow x = 1900\]
So, sum of 50 numbers is 1900.
Now, it is given that two numbers 55, 45 are discarded so the sum of number after removing them is:
New sum \[ = 1900 - \left( {55 + 45} \right)\]
Adding the terms inside the bracket, we get
\[ \Rightarrow \] New sum \[ = 1900 - 100\]
Subtracting the terms, we get
\[ \Rightarrow \] New sum \[ = 1800\]
So, our new sum of 48 numbers is 1800.
Therefore, A.M of the remaining 48 numbers is given by dividing new sum by remaining numbers.
Now using the formula of arithmetic number, we get
A.M\[ = \dfrac{{1800}}{{48}}\]
Dividing the terms, we get
\[ \Rightarrow \] A.M\[ = 37.5\]
So, A.M of the remaining number is \[37.5\].
Hence, option (C) is correct.
Note:
Arithmetic Mean is also known as the average of a set of numbers. We can use a direct method by subtracting 55 and 45 by the product of the original A.M and the original set of numbers and then divide it by 48 as two numbers are being removed.
So, we get our equation as:
A.M \[ = \dfrac{{\left[ {50 \times 38} \right] - 55 - 45}}{{50 - 2}}\]\[\]
Simplifying the expression, we get
\[ \Rightarrow \] A.M \[ = \dfrac{{1800}}{{48}}\]
Dividing the terms, we get
\[ \Rightarrow \] A.M \[ = 37.5\]
So, A.M of the remaining number is\[37.5\].
Here we will find the A.M (Arithmetic Mean) of the remaining numbers by using the data given to us. We will find the sum of all the numbers by using the A.M formula and then subtract the two numbers which are discarded from it. Then we will divide the new sum by the remaining numbers to get the new A.M.
Formula used:
A.M\[ = \dfrac{1}{n}\sum\limits_{i = 1}^n {{a_i}} \], where, A.M is Arithmetic Mean, \[n\] is number of values and \[{a_i}\] is the data set of values
Complete step by step solution:
We know that A.M of 50 given numbers is 38.
Let the sum of 50 numbers be \[x\].
Therefore, using the formula of arithmetic mean, we get
A.M \[ = \dfrac{x}{{50}}\]
\[ \Rightarrow 38 = \dfrac{x}{{50}}\]\[\]
On cross multiplication, we get
\[ \Rightarrow x = 38 \times 50\]
\[ \Rightarrow x = 1900\]
So, sum of 50 numbers is 1900.
Now, it is given that two numbers 55, 45 are discarded so the sum of number after removing them is:
New sum \[ = 1900 - \left( {55 + 45} \right)\]
Adding the terms inside the bracket, we get
\[ \Rightarrow \] New sum \[ = 1900 - 100\]
Subtracting the terms, we get
\[ \Rightarrow \] New sum \[ = 1800\]
So, our new sum of 48 numbers is 1800.
Therefore, A.M of the remaining 48 numbers is given by dividing new sum by remaining numbers.
Now using the formula of arithmetic number, we get
A.M\[ = \dfrac{{1800}}{{48}}\]
Dividing the terms, we get
\[ \Rightarrow \] A.M\[ = 37.5\]
So, A.M of the remaining number is \[37.5\].
Hence, option (C) is correct.
Note:
Arithmetic Mean is also known as the average of a set of numbers. We can use a direct method by subtracting 55 and 45 by the product of the original A.M and the original set of numbers and then divide it by 48 as two numbers are being removed.
So, we get our equation as:
A.M \[ = \dfrac{{\left[ {50 \times 38} \right] - 55 - 45}}{{50 - 2}}\]\[\]
Simplifying the expression, we get
\[ \Rightarrow \] A.M \[ = \dfrac{{1800}}{{48}}\]
Dividing the terms, we get
\[ \Rightarrow \] A.M \[ = 37.5\]
So, A.M of the remaining number is\[37.5\].
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

