
The actual weight of a molecule of water is:
A.$18g$
B.$2.99 \times {10^{ - 23}}g$
C.Both (A) and (B) are correct
D.$1.66 \times {10^{ - 4}}g$
Answer
564.9k+ views
Hint: We can calculate the actual weight of the molecule of water using the mole concept. We can calculate the actual mass occupied by one molecule of water by the mass of one mole of water divided by the Avogadro number multiplied by the given molecules. We know that the value of Avogadro number is $6.022 \times {10^{23}}$.
Complete answer:
Based on the mole concept, we have to know that one mole of a substance contains $6.022 \times {10^{23}}$ molecules.
We have to know that the molar mass of a substance is the mass of one mole of that substance. The number of moles in the sample gives the amount of substance.
We have that molar mass of water is $18g/mol$. Therefore, the mass of one mole of water is $18g$.
Therefore, $18g$ of mass of water is occupied by $6.022 \times {10^{23}}$ number of molecules.
Therefore, we can calculate the mass of one molecule of water by dividing the mass of one mole of water and Avogadro number.
Number of molecules=$\dfrac{{18g}}{{6.022 \times {{10}^{23}}}} \times 1$
Number of molecules=$2.989 \times {10^{ - 23}}g$
Number of molecules=$2.99 \times {10^{ - 23}}g$
The actual weight of a molecule of water is calculated as $2.99 \times {10^{ - 23}}g$.
Therefore, the option (B) is correct.
Note:
-We should not take the actual mass of a molecule of water as $18g$ because one mole of water is $18g$ and not one molecule of water. One mole is equal to $6.022 \times {10^{23}}$. We can say $6.022 \times {10^{23}}$ particles include molecules, ions, atoms (or) electrons.
-We can convert moles to molecules using the Avogadro number. Consider the example,
Example: Calculate the number of molecules of $2.5mol{S_8}$.
Given,
-The number of moles of ${{\text{S}}_{\text{8}}}$ is $2.5mol$
-The Avogadro’s number is $6.022 \times {10^{23}}molecules$
-The number of molecules can be calculated as,
$2.5mol\left( {\dfrac{{6.022 \times {{10}^{23}}molecule}}{{mol}}} \right) = 15.055 \times {10^{23}}molecule$
-The number of molecules $2.5mol{S_8}$ is $15.055 \times {10^{23}}molecules$.
Complete answer:
Based on the mole concept, we have to know that one mole of a substance contains $6.022 \times {10^{23}}$ molecules.
We have to know that the molar mass of a substance is the mass of one mole of that substance. The number of moles in the sample gives the amount of substance.
We have that molar mass of water is $18g/mol$. Therefore, the mass of one mole of water is $18g$.
Therefore, $18g$ of mass of water is occupied by $6.022 \times {10^{23}}$ number of molecules.
Therefore, we can calculate the mass of one molecule of water by dividing the mass of one mole of water and Avogadro number.
Number of molecules=$\dfrac{{18g}}{{6.022 \times {{10}^{23}}}} \times 1$
Number of molecules=$2.989 \times {10^{ - 23}}g$
Number of molecules=$2.99 \times {10^{ - 23}}g$
The actual weight of a molecule of water is calculated as $2.99 \times {10^{ - 23}}g$.
Therefore, the option (B) is correct.
Note:
-We should not take the actual mass of a molecule of water as $18g$ because one mole of water is $18g$ and not one molecule of water. One mole is equal to $6.022 \times {10^{23}}$. We can say $6.022 \times {10^{23}}$ particles include molecules, ions, atoms (or) electrons.
-We can convert moles to molecules using the Avogadro number. Consider the example,
Example: Calculate the number of molecules of $2.5mol{S_8}$.
Given,
-The number of moles of ${{\text{S}}_{\text{8}}}$ is $2.5mol$
-The Avogadro’s number is $6.022 \times {10^{23}}molecules$
-The number of molecules can be calculated as,
$2.5mol\left( {\dfrac{{6.022 \times {{10}^{23}}molecule}}{{mol}}} \right) = 15.055 \times {10^{23}}molecule$
-The number of molecules $2.5mol{S_8}$ is $15.055 \times {10^{23}}molecules$.
Recently Updated Pages
The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Differentiate between action potential and resting class 12 biology CBSE

Two plane mirrors arranged at right angles to each class 12 physics CBSE

Which of the following molecules is are chiral A I class 12 chemistry CBSE

Name different types of neurons and give one function class 12 biology CBSE

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

Discuss the various forms of bacteria class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

An example of chemosynthetic bacteria is A E coli B class 11 biology CBSE

