
The acceleration time graph of a particle moving along a straight line is as shown in Fig. At what time the particle acquires its initial velocity?
Answer
518.4k+ views
Hint: We are given an acceleration- time graph, as it is a straight line we can use it to find acceleration as a function of time. Then use this equation to get a relation between velocity and time, which will easily lead us to answer.
Formula used: if $\left( {{y_1},{x_1}} \right)$ & $\left( {{y_2},{x_2}} \right)$ are points on a straight line, then its equation in two point form can be given by:
$y = \left( {\dfrac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}}} \right)(x - {x_1}) + {y_1}$
The formula for acceleration is
$a = \dfrac{{dv}}{{dt}}$ … (1)
COMPLETE STEP BY STEP SOLUTION:
Here in the acceleration-time graph the two points given to us are (4, 0) & (0, 10). If we represent acceleration by a and time by t and the we can get the equation of the line by applying the two point form in the following way:
\[\begin{array}{l}
\left( {{x_1},{y_1}} \right) = \left( {4,0} \right)\\
\left( {{x_2},{y_2}} \right) = \left( {0,10} \right)
\end{array}\]
$\begin{array}{l}
y = \left( {\dfrac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}}} \right)(x - {x_1}) + {y_1}\\
y = \left( {\dfrac{{10 - 0}}{{0 - 4}}} \right)(x - 4) + 0\\
y = - \dfrac{5}{2}(x - 4)
\end{array}$
Now we know that x = t and y = a, so we can write that
$\begin{array}{l}
a = - \dfrac{5}{2}\left( {t - 4} \right)\\
\therefore a = - \dfrac{5}{2}t + 10
\end{array}$
Now, we know that acceleration is equal to the time derivative of velocity, therefore we can write using equation 1,
$\dfrac{{dv}}{{dt}} = - \dfrac{5}{2}t + 10$
$dv = \left( { - \dfrac{5}{2}t + 10} \right)dt$
Let us assume initial velocity c, integrating both used using limit
\[\int\limits_c^v {dv} = \int\limits_0^t {\left( { - \dfrac{5}{2}t + 10} \right)dt} \]
On solving we get
$v = - \dfrac{5}{4}{t^2} + 10t + c$
Where v is velocity at any time t
For same initial velocity
$v = c$
$\begin{array}{l}
- \dfrac{5}{4}{t^2} + 10t + c = c\\
\Rightarrow \dfrac{5}{4}{t^2} - 10t = 0\\
\Rightarrow 5{t^2} - 40t = 0\\
\Rightarrow 5t\left( {t - 8} \right) = 0\\
\therefore t = 0,8
\end{array}$
Therefore the particle acquires its initial velocity at t = 0s and t = 8s.
Note: Alternative approach for this question can be
The area of acceleration-time graphs give change in velocity and according to the question change in velocity from t=0 s to the required time must be zero. Thus the area under the graph must be zero. And the area under the graph is found by integration. So we can integrate the acceleration-time function till time t when the answer becomes zero. And it will be our required time.
\[\int\limits_0^t {\left( { - \dfrac{5}{2}t + 10} \right)dt} = 0\]
On solving t=8 s.
Formula used: if $\left( {{y_1},{x_1}} \right)$ & $\left( {{y_2},{x_2}} \right)$ are points on a straight line, then its equation in two point form can be given by:
$y = \left( {\dfrac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}}} \right)(x - {x_1}) + {y_1}$
The formula for acceleration is
$a = \dfrac{{dv}}{{dt}}$ … (1)
COMPLETE STEP BY STEP SOLUTION:
Here in the acceleration-time graph the two points given to us are (4, 0) & (0, 10). If we represent acceleration by a and time by t and the we can get the equation of the line by applying the two point form in the following way:
\[\begin{array}{l}
\left( {{x_1},{y_1}} \right) = \left( {4,0} \right)\\
\left( {{x_2},{y_2}} \right) = \left( {0,10} \right)
\end{array}\]
$\begin{array}{l}
y = \left( {\dfrac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}}} \right)(x - {x_1}) + {y_1}\\
y = \left( {\dfrac{{10 - 0}}{{0 - 4}}} \right)(x - 4) + 0\\
y = - \dfrac{5}{2}(x - 4)
\end{array}$
Now we know that x = t and y = a, so we can write that
$\begin{array}{l}
a = - \dfrac{5}{2}\left( {t - 4} \right)\\
\therefore a = - \dfrac{5}{2}t + 10
\end{array}$
Now, we know that acceleration is equal to the time derivative of velocity, therefore we can write using equation 1,
$\dfrac{{dv}}{{dt}} = - \dfrac{5}{2}t + 10$
$dv = \left( { - \dfrac{5}{2}t + 10} \right)dt$
Let us assume initial velocity c, integrating both used using limit
\[\int\limits_c^v {dv} = \int\limits_0^t {\left( { - \dfrac{5}{2}t + 10} \right)dt} \]
On solving we get
$v = - \dfrac{5}{4}{t^2} + 10t + c$
Where v is velocity at any time t
For same initial velocity
$v = c$
$\begin{array}{l}
- \dfrac{5}{4}{t^2} + 10t + c = c\\
\Rightarrow \dfrac{5}{4}{t^2} - 10t = 0\\
\Rightarrow 5{t^2} - 40t = 0\\
\Rightarrow 5t\left( {t - 8} \right) = 0\\
\therefore t = 0,8
\end{array}$
Therefore the particle acquires its initial velocity at t = 0s and t = 8s.
Note: Alternative approach for this question can be
The area of acceleration-time graphs give change in velocity and according to the question change in velocity from t=0 s to the required time must be zero. Thus the area under the graph must be zero. And the area under the graph is found by integration. So we can integrate the acceleration-time function till time t when the answer becomes zero. And it will be our required time.
\[\int\limits_0^t {\left( { - \dfrac{5}{2}t + 10} \right)dt} = 0\]
On solving t=8 s.
Recently Updated Pages
The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Differentiate between action potential and resting class 12 biology CBSE

Two plane mirrors arranged at right angles to each class 12 physics CBSE

Which of the following molecules is are chiral A I class 12 chemistry CBSE

Name different types of neurons and give one function class 12 biology CBSE

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

An example of chemosynthetic bacteria is A E coli B class 11 biology CBSE

10 examples of friction in our daily life

