
The acceleration of a motorcycle is given as a function of time ${a_x}(t) = At - B{t^2}$ , where $A = 1.50\,m\,{\sec ^{ - 2}}$ and $B = 0.120\,m\,{\sec ^{ - 4}}$ . The motorcycle is at rest at origin at $t = 0$. Calculate the maximum velocity that the motorcycle attains:
Answer
504k+ views
Hint: In order to find the maximum velocity we will first find the time at which acceleration is zero and since acceleration is a derivative of velocity of a body with respect to time, using this concept we will solve for velocity at particular time. We will use the relation between velocity and acceleration which is $a = \dfrac{{dv}}{{dt}}$.
Complete step by step answer:
First, it’s given us that at $t = 0$ motorcycle was at rest at origin which means the value of $t = 0$ since, body is at origin. For the motorcycle to have a maximum velocity its acceleration must be zero and we will put acceleration magnitude zero in the given relation ${a_x}(t) = At - B{t^2}$ and we will get,
$At - B = 0$
$\Rightarrow t = \dfrac{A}{B}$
Putting the values $A = 1.50\,m\,{\sec ^{ - 2}}$ and $B = 0.120\,m\,{\sec ^{ - 4}}$ we get,
$t = 12.5\sec $
Now, acceleration can be written as:
$\dfrac{{dv}}{{dt}} = At - B{t^2}$
Or integrating both sides,
$\int {dv} = \int {(At - B{t^2})dt} $
$\Rightarrow v = A\dfrac{{{t^2}}}{2} + B\dfrac{{{t^3}}}{3}$
On putting the values of
$t = 12.5\sec $
$\Rightarrow A = 1.50\,m\,{\sec ^{ - 2}}$
$\Rightarrow B = 0.120\,m\,{\sec ^{ - 4}}$
In the equation $v = A\dfrac{{{t^2}}}{2} - B\dfrac{{{t^3}}}{3}$
We get,
$v = (0.75){(12.5)^2} - (0.04){(12.5)^3}$
$\therefore v = 39.1\,m\,{\sec ^{ - 1}}$
So when acceleration is zero the magnitude of the velocity of the motorcycle is maximum.
Hence, the value of maximum velocity of the motorcycle is $v = 39.1\,m{\sec ^{ - 1}}$.
Note: It should be remembered that, the basic integration formula of functions like $\int {{x^n}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}}} $ and since motorcycle was at origin hence, the definite integral can be ignored since it was then when $t = 0$ and just at this time motorcycle attains its maximum velocity and also remember the relation between velocity and acceleration which is $a = \dfrac{{dv}}{{dt}}$.
Complete step by step answer:
First, it’s given us that at $t = 0$ motorcycle was at rest at origin which means the value of $t = 0$ since, body is at origin. For the motorcycle to have a maximum velocity its acceleration must be zero and we will put acceleration magnitude zero in the given relation ${a_x}(t) = At - B{t^2}$ and we will get,
$At - B = 0$
$\Rightarrow t = \dfrac{A}{B}$
Putting the values $A = 1.50\,m\,{\sec ^{ - 2}}$ and $B = 0.120\,m\,{\sec ^{ - 4}}$ we get,
$t = 12.5\sec $
Now, acceleration can be written as:
$\dfrac{{dv}}{{dt}} = At - B{t^2}$
Or integrating both sides,
$\int {dv} = \int {(At - B{t^2})dt} $
$\Rightarrow v = A\dfrac{{{t^2}}}{2} + B\dfrac{{{t^3}}}{3}$
On putting the values of
$t = 12.5\sec $
$\Rightarrow A = 1.50\,m\,{\sec ^{ - 2}}$
$\Rightarrow B = 0.120\,m\,{\sec ^{ - 4}}$
In the equation $v = A\dfrac{{{t^2}}}{2} - B\dfrac{{{t^3}}}{3}$
We get,
$v = (0.75){(12.5)^2} - (0.04){(12.5)^3}$
$\therefore v = 39.1\,m\,{\sec ^{ - 1}}$
So when acceleration is zero the magnitude of the velocity of the motorcycle is maximum.
Hence, the value of maximum velocity of the motorcycle is $v = 39.1\,m{\sec ^{ - 1}}$.
Note: It should be remembered that, the basic integration formula of functions like $\int {{x^n}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}}} $ and since motorcycle was at origin hence, the definite integral can be ignored since it was then when $t = 0$ and just at this time motorcycle attains its maximum velocity and also remember the relation between velocity and acceleration which is $a = \dfrac{{dv}}{{dt}}$.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

