
The acceleration of a motorcycle is given as a function of time ${a_x}(t) = At - B{t^2}$ , where $A = 1.50\,m\,{\sec ^{ - 2}}$ and $B = 0.120\,m\,{\sec ^{ - 4}}$ . The motorcycle is at rest at origin at $t = 0$. Calculate the maximum velocity that the motorcycle attains:
Answer
517.8k+ views
Hint: In order to find the maximum velocity we will first find the time at which acceleration is zero and since acceleration is a derivative of velocity of a body with respect to time, using this concept we will solve for velocity at particular time. We will use the relation between velocity and acceleration which is $a = \dfrac{{dv}}{{dt}}$.
Complete step by step answer:
First, it’s given us that at $t = 0$ motorcycle was at rest at origin which means the value of $t = 0$ since, body is at origin. For the motorcycle to have a maximum velocity its acceleration must be zero and we will put acceleration magnitude zero in the given relation ${a_x}(t) = At - B{t^2}$ and we will get,
$At - B = 0$
$\Rightarrow t = \dfrac{A}{B}$
Putting the values $A = 1.50\,m\,{\sec ^{ - 2}}$ and $B = 0.120\,m\,{\sec ^{ - 4}}$ we get,
$t = 12.5\sec $
Now, acceleration can be written as:
$\dfrac{{dv}}{{dt}} = At - B{t^2}$
Or integrating both sides,
$\int {dv} = \int {(At - B{t^2})dt} $
$\Rightarrow v = A\dfrac{{{t^2}}}{2} + B\dfrac{{{t^3}}}{3}$
On putting the values of
$t = 12.5\sec $
$\Rightarrow A = 1.50\,m\,{\sec ^{ - 2}}$
$\Rightarrow B = 0.120\,m\,{\sec ^{ - 4}}$
In the equation $v = A\dfrac{{{t^2}}}{2} - B\dfrac{{{t^3}}}{3}$
We get,
$v = (0.75){(12.5)^2} - (0.04){(12.5)^3}$
$\therefore v = 39.1\,m\,{\sec ^{ - 1}}$
So when acceleration is zero the magnitude of the velocity of the motorcycle is maximum.
Hence, the value of maximum velocity of the motorcycle is $v = 39.1\,m{\sec ^{ - 1}}$.
Note: It should be remembered that, the basic integration formula of functions like $\int {{x^n}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}}} $ and since motorcycle was at origin hence, the definite integral can be ignored since it was then when $t = 0$ and just at this time motorcycle attains its maximum velocity and also remember the relation between velocity and acceleration which is $a = \dfrac{{dv}}{{dt}}$.
Complete step by step answer:
First, it’s given us that at $t = 0$ motorcycle was at rest at origin which means the value of $t = 0$ since, body is at origin. For the motorcycle to have a maximum velocity its acceleration must be zero and we will put acceleration magnitude zero in the given relation ${a_x}(t) = At - B{t^2}$ and we will get,
$At - B = 0$
$\Rightarrow t = \dfrac{A}{B}$
Putting the values $A = 1.50\,m\,{\sec ^{ - 2}}$ and $B = 0.120\,m\,{\sec ^{ - 4}}$ we get,
$t = 12.5\sec $
Now, acceleration can be written as:
$\dfrac{{dv}}{{dt}} = At - B{t^2}$
Or integrating both sides,
$\int {dv} = \int {(At - B{t^2})dt} $
$\Rightarrow v = A\dfrac{{{t^2}}}{2} + B\dfrac{{{t^3}}}{3}$
On putting the values of
$t = 12.5\sec $
$\Rightarrow A = 1.50\,m\,{\sec ^{ - 2}}$
$\Rightarrow B = 0.120\,m\,{\sec ^{ - 4}}$
In the equation $v = A\dfrac{{{t^2}}}{2} - B\dfrac{{{t^3}}}{3}$
We get,
$v = (0.75){(12.5)^2} - (0.04){(12.5)^3}$
$\therefore v = 39.1\,m\,{\sec ^{ - 1}}$
So when acceleration is zero the magnitude of the velocity of the motorcycle is maximum.
Hence, the value of maximum velocity of the motorcycle is $v = 39.1\,m{\sec ^{ - 1}}$.
Note: It should be remembered that, the basic integration formula of functions like $\int {{x^n}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}}} $ and since motorcycle was at origin hence, the definite integral can be ignored since it was then when $t = 0$ and just at this time motorcycle attains its maximum velocity and also remember the relation between velocity and acceleration which is $a = \dfrac{{dv}}{{dt}}$.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Explain zero factorial class 11 maths CBSE

What organs are located on the left side of your body class 11 biology CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

How do I convert ms to kmh Give an example class 11 physics CBSE

