
The acceleration due to gravity at the poles and the equator is ${g_p}$ and ${g_e}$ respectively. If the earth is a sphere of radius RE and rotating about its axis with angular speed ω, then ${g_p} - {g_e}$ is then given by
(A) \[\dfrac{{{\omega ^2}}}{{{R_E}}}\]
(B) \[\dfrac{{{\omega ^2}}}{{{R_E}^2}}\]
(C) ${R^2}_E{\omega ^2}$
(D) ${R_E}{\omega ^2}$
Answer
564.3k+ views
Hint
In order to solve the problem, we have to take into the account of acceleration due to the gravity at the pole and the equator at a certain latitude. We also have to take in the account of the rotation of the earth. The acceleration due to gravity at a place of latitude $\lambda $ due to the earth’s rotation is;
$g' = g - R{\omega ^2}{\cos ^2}\lambda $
Where $g$ denotes the acceleration due to gravity, $R$ denotes the radius of the earth, $\omega $ denotes the angular velocity,
$\lambda $ denotes the latitude.
Complete step by step solution
Given data:
Acceleration due to gravity at pole is ${g_p}$,
Acceleration due to gravity at the equator is ${g_e}$ .
The acceleration due to gravity at a place of latitude $\lambda $ due to the earth’s rotation is;
$g' = g - R{\omega ^2}{\cos ^2}\lambda $
At the equator
The acceleration due to gravity;
$g' = g - {R_E}{\omega ^2}{\cos ^2}\lambda $
Since at equator the latitude $\lambda = {0^ \circ }$ , $\cos \,{0^ \circ } = 1$;
By substituting we get;
$g' = g - {R_E}{\omega ^2}$
Since $g' = {g_e}$ ;
${g_e} = g - {R_E}{\omega ^2}$
At the pole:
The acceleration due to gravity;
$g' = g - {R_P}{\omega ^2}{\cos ^2}\lambda $
Since at the pole the latitude $\lambda = {90^ \circ }$, $\cos \,{90^ \circ } = {0^ \circ }$;
By substituting we get;
$g' = g$
Since $g' = {g_p}$ we get;
${g_p} = g$
Since we need ${g_p} - {g_e}$
${g_p} - {g_e} = g - g - {R_E}{\omega ^2}$z
By cancelling the like terms, we get;
${g_p} - {g_e} = {R_E}{\omega ^2}$
Therefore, the answer is ${g_p} - {g_e} = {R_E}{\omega ^2}$ .
Hence, the option (D) ${g_p} - {g_e} = {R_E}{\omega ^2}$ is the correct answer.
Note
The earth shape is not circular, it is elongated in shape. Since the shape of the earth is not round the radius of the earth differs at the poles and at the equator. Due to this the gravitational force gets affected. In light of this reason the mass placed in the equator and pole gets affected.
In order to solve the problem, we have to take into the account of acceleration due to the gravity at the pole and the equator at a certain latitude. We also have to take in the account of the rotation of the earth. The acceleration due to gravity at a place of latitude $\lambda $ due to the earth’s rotation is;
$g' = g - R{\omega ^2}{\cos ^2}\lambda $
Where $g$ denotes the acceleration due to gravity, $R$ denotes the radius of the earth, $\omega $ denotes the angular velocity,
$\lambda $ denotes the latitude.
Complete step by step solution
Given data:
Acceleration due to gravity at pole is ${g_p}$,
Acceleration due to gravity at the equator is ${g_e}$ .
The acceleration due to gravity at a place of latitude $\lambda $ due to the earth’s rotation is;
$g' = g - R{\omega ^2}{\cos ^2}\lambda $
At the equator
The acceleration due to gravity;
$g' = g - {R_E}{\omega ^2}{\cos ^2}\lambda $
Since at equator the latitude $\lambda = {0^ \circ }$ , $\cos \,{0^ \circ } = 1$;
By substituting we get;
$g' = g - {R_E}{\omega ^2}$
Since $g' = {g_e}$ ;
${g_e} = g - {R_E}{\omega ^2}$
At the pole:
The acceleration due to gravity;
$g' = g - {R_P}{\omega ^2}{\cos ^2}\lambda $
Since at the pole the latitude $\lambda = {90^ \circ }$, $\cos \,{90^ \circ } = {0^ \circ }$;
By substituting we get;
$g' = g$
Since $g' = {g_p}$ we get;
${g_p} = g$
Since we need ${g_p} - {g_e}$
${g_p} - {g_e} = g - g - {R_E}{\omega ^2}$z
By cancelling the like terms, we get;
${g_p} - {g_e} = {R_E}{\omega ^2}$
Therefore, the answer is ${g_p} - {g_e} = {R_E}{\omega ^2}$ .
Hence, the option (D) ${g_p} - {g_e} = {R_E}{\omega ^2}$ is the correct answer.
Note
The earth shape is not circular, it is elongated in shape. Since the shape of the earth is not round the radius of the earth differs at the poles and at the equator. Due to this the gravitational force gets affected. In light of this reason the mass placed in the equator and pole gets affected.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

