
The absolute velocity (ionic mobility) of ${\text{A}}{{\text{g}}^ + }$ is $5.7 \times {10^{ - 4}}{\text{cm }}{{\text{s}}^ - }$ and of ${\text{NO}}_3^ - $ $6.9 \times {10^{ - 4}}{\text{cm }}{{\text{s}}^ - }$ assuming complete dissociation, calculate the equivalent conductivity of 0.01M ${\text{AgN}}{{\text{O}}_3}$ at infinite dilution.
A. 121.5 ${\text{Sc}}{{\text{m}}^2}{\text{e}}{{\text{q}}^{ - 1}}$
B. 1.2 ${\text{Sc}}{{\text{m}}^2}{\text{e}}{{\text{q}}^{ - 1}}$
C. 0.12 ${\text{Sc}}{{\text{m}}^2}{\text{e}}{{\text{q}}^{ - 1}}$
D. None of the above
Answer
569.4k+ views
Hint: Since the question is stating infinite dilution and complete dissociation, we can say that ${\text{AgN}}{{\text{O}}_3}$ is a strong electrolyte and the molar conductivity at infinite dilution is called limiting molar conductivity. Recall the Kohlrausch law of independent migration of ions. And calculate limiting molar conductivity.
Complete Step by step answer: Let’s first understand the Kohlarsh law of independent migration of ions, the law states that limiting molar conductivity of an electrolyte can be represented by the sum of the individual contribution of the anion and cation of the electrolyte. i.e., $ \wedge _{\text{m}}^ \circ $ = ${{\lambda }}_ + ^ \circ {{ + \lambda }}_ - ^ \circ $ (where, ${{\lambda }}_ + ^ \circ $ and ${{\lambda }}_ - ^ \circ $ are the limiting molar of cation and anion respectively)
We know that the ionic conductance and ionic mobility are directly proportional to each other
$ \Rightarrow $${{\lambda }}_ + ^ \circ $ = F${{\text{U}}_ + }$ and,
$ \Rightarrow $${{\lambda }}_ - ^ \circ $ = F${{\text{U}}_ - }$
Since we are given the velocities of silver cation and nitrate anion for ${\text{AgN}}{{\text{O}}_3}$ electrolyte. We can now calculate the limiting molar conductivity.
$ \Rightarrow $$ \wedge _{\text{m}}^ \circ $ = F (${{\text{U}}_{{\text{A}}{{\text{g}}^ + }}}$ + ${{\text{U}}_{{\text{NO}}_3^ - }}$ )
$ \Rightarrow $$ \wedge _{\text{m}}^ \circ $ = 96485 ($5.7 \times {10^{ - 4}}$+ $6.9 \times {10^{ - 4}}$ )
$ \Rightarrow $$ \wedge _{\text{m}}^ \circ $ = 96485 (12.6 $ \times $${10^{ - 4}}$), [ here we have used the addition formula ${\text{a}} \times {\text{1}}{{\text{0}}^{\text{n}}}{\text{ b}} \times {\text{1}}{{\text{0}}^{\text{n}}} = {\text{ (a + b)}} \times {\text{1}}{{\text{0}}^{\text{n}}}$]
$ \Rightarrow $$ \wedge _{\text{m}}^ \circ $ = 1215711 $ \times $${10^{ - 4}}$
$ \Rightarrow $$ \wedge _{\text{m}}^ \circ $ = 121.6 (we have only taken to the 1st decimal point, by rounding off the value from 121.57)
Now, we will calculate the value of molar conductance using the following formula,
$ \Rightarrow $${ \wedge _{\text{m}}} = \wedge _{\text{m}}^ \circ {\text{ }} - {\text{A}}\sqrt {\text{c}} $ (the value of A for ${\text{AgN}}{{\text{O}}_3}$electrolyte is 1 since the charges on the cation and anion produce after dissociation is 1-1 )
$ \Rightarrow $${ \wedge _{\text{m}}} = 121.6{\text{ }} - 1\sqrt {0.01} $
$ \Rightarrow $${ \wedge _{\text{m}}} = 121.6{\text{ }} - 0.1$ ( the value of $\sqrt {0.01} $ = 0.1 )
$ \Rightarrow $${ \wedge _{\text{m}}} = 121.5$
Now, let’s calculate the value of equivalent conductivity;
$ \Rightarrow $ ${ \wedge _{{\text{eq}}}}$ = $\dfrac{{{ \wedge _{\text{m}}}}}{{\text{n}}}$
$ \Rightarrow $ ${ \wedge _{{\text{eq}}}}$ = $\dfrac{{{ \wedge _{\text{m}}}}}{{\text{n}}}$ (the value of, $ \Rightarrow $ n (valence) = molecular mass/ equivalent mass = 170/170 = 1)
$ \Rightarrow $ ${ \wedge _{{\text{eq}}}}$ = $\dfrac{{121.5}}{1}$
$ \Rightarrow $ ${ \wedge _{{\text{eq}}}}$ = 121.5 ${\text{Sc}}{{\text{m}}^2}{\text{e}}{{\text{q}}^{ - 1}}$
Hence, the correct answer is option (A)i.e., 121.5 ${\text{Sc}}{{\text{m}}^2}{\text{e}}{{\text{q}}^{ - 1}}$
Note: Remember we have given the value ionic mobility (velocity), and not the limiting molar conductivity, otherwise if we just add up the values limiting molar conductivity of corresponding anions and cation we can get the limiting molar conductivity ${\text{AgN}}{{\text{O}}_3}$. But in this question, we had to use the concept of ionic mobility and ionic conductance to calculate limiting molar conductivity.
Complete Step by step answer: Let’s first understand the Kohlarsh law of independent migration of ions, the law states that limiting molar conductivity of an electrolyte can be represented by the sum of the individual contribution of the anion and cation of the electrolyte. i.e., $ \wedge _{\text{m}}^ \circ $ = ${{\lambda }}_ + ^ \circ {{ + \lambda }}_ - ^ \circ $ (where, ${{\lambda }}_ + ^ \circ $ and ${{\lambda }}_ - ^ \circ $ are the limiting molar of cation and anion respectively)
We know that the ionic conductance and ionic mobility are directly proportional to each other
$ \Rightarrow $${{\lambda }}_ + ^ \circ $ = F${{\text{U}}_ + }$ and,
$ \Rightarrow $${{\lambda }}_ - ^ \circ $ = F${{\text{U}}_ - }$
Since we are given the velocities of silver cation and nitrate anion for ${\text{AgN}}{{\text{O}}_3}$ electrolyte. We can now calculate the limiting molar conductivity.
$ \Rightarrow $$ \wedge _{\text{m}}^ \circ $ = F (${{\text{U}}_{{\text{A}}{{\text{g}}^ + }}}$ + ${{\text{U}}_{{\text{NO}}_3^ - }}$ )
$ \Rightarrow $$ \wedge _{\text{m}}^ \circ $ = 96485 ($5.7 \times {10^{ - 4}}$+ $6.9 \times {10^{ - 4}}$ )
$ \Rightarrow $$ \wedge _{\text{m}}^ \circ $ = 96485 (12.6 $ \times $${10^{ - 4}}$), [ here we have used the addition formula ${\text{a}} \times {\text{1}}{{\text{0}}^{\text{n}}}{\text{ b}} \times {\text{1}}{{\text{0}}^{\text{n}}} = {\text{ (a + b)}} \times {\text{1}}{{\text{0}}^{\text{n}}}$]
$ \Rightarrow $$ \wedge _{\text{m}}^ \circ $ = 1215711 $ \times $${10^{ - 4}}$
$ \Rightarrow $$ \wedge _{\text{m}}^ \circ $ = 121.6 (we have only taken to the 1st decimal point, by rounding off the value from 121.57)
Now, we will calculate the value of molar conductance using the following formula,
$ \Rightarrow $${ \wedge _{\text{m}}} = \wedge _{\text{m}}^ \circ {\text{ }} - {\text{A}}\sqrt {\text{c}} $ (the value of A for ${\text{AgN}}{{\text{O}}_3}$electrolyte is 1 since the charges on the cation and anion produce after dissociation is 1-1 )
$ \Rightarrow $${ \wedge _{\text{m}}} = 121.6{\text{ }} - 1\sqrt {0.01} $
$ \Rightarrow $${ \wedge _{\text{m}}} = 121.6{\text{ }} - 0.1$ ( the value of $\sqrt {0.01} $ = 0.1 )
$ \Rightarrow $${ \wedge _{\text{m}}} = 121.5$
Now, let’s calculate the value of equivalent conductivity;
$ \Rightarrow $ ${ \wedge _{{\text{eq}}}}$ = $\dfrac{{{ \wedge _{\text{m}}}}}{{\text{n}}}$
$ \Rightarrow $ ${ \wedge _{{\text{eq}}}}$ = $\dfrac{{{ \wedge _{\text{m}}}}}{{\text{n}}}$ (the value of, $ \Rightarrow $ n (valence) = molecular mass/ equivalent mass = 170/170 = 1)
$ \Rightarrow $ ${ \wedge _{{\text{eq}}}}$ = $\dfrac{{121.5}}{1}$
$ \Rightarrow $ ${ \wedge _{{\text{eq}}}}$ = 121.5 ${\text{Sc}}{{\text{m}}^2}{\text{e}}{{\text{q}}^{ - 1}}$
Hence, the correct answer is option (A)i.e., 121.5 ${\text{Sc}}{{\text{m}}^2}{\text{e}}{{\text{q}}^{ - 1}}$
Note: Remember we have given the value ionic mobility (velocity), and not the limiting molar conductivity, otherwise if we just add up the values limiting molar conductivity of corresponding anions and cation we can get the limiting molar conductivity ${\text{AgN}}{{\text{O}}_3}$. But in this question, we had to use the concept of ionic mobility and ionic conductance to calculate limiting molar conductivity.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

