
The absolute velocity (ionic mobility) of ${\text{A}}{{\text{g}}^ + }$ is $5.7 \times {10^{ - 4}}{\text{cm }}{{\text{s}}^ - }$ and of ${\text{NO}}_3^ - $ $6.9 \times {10^{ - 4}}{\text{cm }}{{\text{s}}^ - }$ assuming complete dissociation, calculate the equivalent conductivity of 0.01M ${\text{AgN}}{{\text{O}}_3}$ at infinite dilution.
A. 121.5 ${\text{Sc}}{{\text{m}}^2}{\text{e}}{{\text{q}}^{ - 1}}$
B. 1.2 ${\text{Sc}}{{\text{m}}^2}{\text{e}}{{\text{q}}^{ - 1}}$
C. 0.12 ${\text{Sc}}{{\text{m}}^2}{\text{e}}{{\text{q}}^{ - 1}}$
D. None of the above
Answer
555.6k+ views
Hint: Since the question is stating infinite dilution and complete dissociation, we can say that ${\text{AgN}}{{\text{O}}_3}$ is a strong electrolyte and the molar conductivity at infinite dilution is called limiting molar conductivity. Recall the Kohlrausch law of independent migration of ions. And calculate limiting molar conductivity.
Complete Step by step answer: Let’s first understand the Kohlarsh law of independent migration of ions, the law states that limiting molar conductivity of an electrolyte can be represented by the sum of the individual contribution of the anion and cation of the electrolyte. i.e., $ \wedge _{\text{m}}^ \circ $ = ${{\lambda }}_ + ^ \circ {{ + \lambda }}_ - ^ \circ $ (where, ${{\lambda }}_ + ^ \circ $ and ${{\lambda }}_ - ^ \circ $ are the limiting molar of cation and anion respectively)
We know that the ionic conductance and ionic mobility are directly proportional to each other
$ \Rightarrow $${{\lambda }}_ + ^ \circ $ = F${{\text{U}}_ + }$ and,
$ \Rightarrow $${{\lambda }}_ - ^ \circ $ = F${{\text{U}}_ - }$
Since we are given the velocities of silver cation and nitrate anion for ${\text{AgN}}{{\text{O}}_3}$ electrolyte. We can now calculate the limiting molar conductivity.
$ \Rightarrow $$ \wedge _{\text{m}}^ \circ $ = F (${{\text{U}}_{{\text{A}}{{\text{g}}^ + }}}$ + ${{\text{U}}_{{\text{NO}}_3^ - }}$ )
$ \Rightarrow $$ \wedge _{\text{m}}^ \circ $ = 96485 ($5.7 \times {10^{ - 4}}$+ $6.9 \times {10^{ - 4}}$ )
$ \Rightarrow $$ \wedge _{\text{m}}^ \circ $ = 96485 (12.6 $ \times $${10^{ - 4}}$), [ here we have used the addition formula ${\text{a}} \times {\text{1}}{{\text{0}}^{\text{n}}}{\text{ b}} \times {\text{1}}{{\text{0}}^{\text{n}}} = {\text{ (a + b)}} \times {\text{1}}{{\text{0}}^{\text{n}}}$]
$ \Rightarrow $$ \wedge _{\text{m}}^ \circ $ = 1215711 $ \times $${10^{ - 4}}$
$ \Rightarrow $$ \wedge _{\text{m}}^ \circ $ = 121.6 (we have only taken to the 1st decimal point, by rounding off the value from 121.57)
Now, we will calculate the value of molar conductance using the following formula,
$ \Rightarrow $${ \wedge _{\text{m}}} = \wedge _{\text{m}}^ \circ {\text{ }} - {\text{A}}\sqrt {\text{c}} $ (the value of A for ${\text{AgN}}{{\text{O}}_3}$electrolyte is 1 since the charges on the cation and anion produce after dissociation is 1-1 )
$ \Rightarrow $${ \wedge _{\text{m}}} = 121.6{\text{ }} - 1\sqrt {0.01} $
$ \Rightarrow $${ \wedge _{\text{m}}} = 121.6{\text{ }} - 0.1$ ( the value of $\sqrt {0.01} $ = 0.1 )
$ \Rightarrow $${ \wedge _{\text{m}}} = 121.5$
Now, let’s calculate the value of equivalent conductivity;
$ \Rightarrow $ ${ \wedge _{{\text{eq}}}}$ = $\dfrac{{{ \wedge _{\text{m}}}}}{{\text{n}}}$
$ \Rightarrow $ ${ \wedge _{{\text{eq}}}}$ = $\dfrac{{{ \wedge _{\text{m}}}}}{{\text{n}}}$ (the value of, $ \Rightarrow $ n (valence) = molecular mass/ equivalent mass = 170/170 = 1)
$ \Rightarrow $ ${ \wedge _{{\text{eq}}}}$ = $\dfrac{{121.5}}{1}$
$ \Rightarrow $ ${ \wedge _{{\text{eq}}}}$ = 121.5 ${\text{Sc}}{{\text{m}}^2}{\text{e}}{{\text{q}}^{ - 1}}$
Hence, the correct answer is option (A)i.e., 121.5 ${\text{Sc}}{{\text{m}}^2}{\text{e}}{{\text{q}}^{ - 1}}$
Note: Remember we have given the value ionic mobility (velocity), and not the limiting molar conductivity, otherwise if we just add up the values limiting molar conductivity of corresponding anions and cation we can get the limiting molar conductivity ${\text{AgN}}{{\text{O}}_3}$. But in this question, we had to use the concept of ionic mobility and ionic conductance to calculate limiting molar conductivity.
Complete Step by step answer: Let’s first understand the Kohlarsh law of independent migration of ions, the law states that limiting molar conductivity of an electrolyte can be represented by the sum of the individual contribution of the anion and cation of the electrolyte. i.e., $ \wedge _{\text{m}}^ \circ $ = ${{\lambda }}_ + ^ \circ {{ + \lambda }}_ - ^ \circ $ (where, ${{\lambda }}_ + ^ \circ $ and ${{\lambda }}_ - ^ \circ $ are the limiting molar of cation and anion respectively)
We know that the ionic conductance and ionic mobility are directly proportional to each other
$ \Rightarrow $${{\lambda }}_ + ^ \circ $ = F${{\text{U}}_ + }$ and,
$ \Rightarrow $${{\lambda }}_ - ^ \circ $ = F${{\text{U}}_ - }$
Since we are given the velocities of silver cation and nitrate anion for ${\text{AgN}}{{\text{O}}_3}$ electrolyte. We can now calculate the limiting molar conductivity.
$ \Rightarrow $$ \wedge _{\text{m}}^ \circ $ = F (${{\text{U}}_{{\text{A}}{{\text{g}}^ + }}}$ + ${{\text{U}}_{{\text{NO}}_3^ - }}$ )
$ \Rightarrow $$ \wedge _{\text{m}}^ \circ $ = 96485 ($5.7 \times {10^{ - 4}}$+ $6.9 \times {10^{ - 4}}$ )
$ \Rightarrow $$ \wedge _{\text{m}}^ \circ $ = 96485 (12.6 $ \times $${10^{ - 4}}$), [ here we have used the addition formula ${\text{a}} \times {\text{1}}{{\text{0}}^{\text{n}}}{\text{ b}} \times {\text{1}}{{\text{0}}^{\text{n}}} = {\text{ (a + b)}} \times {\text{1}}{{\text{0}}^{\text{n}}}$]
$ \Rightarrow $$ \wedge _{\text{m}}^ \circ $ = 1215711 $ \times $${10^{ - 4}}$
$ \Rightarrow $$ \wedge _{\text{m}}^ \circ $ = 121.6 (we have only taken to the 1st decimal point, by rounding off the value from 121.57)
Now, we will calculate the value of molar conductance using the following formula,
$ \Rightarrow $${ \wedge _{\text{m}}} = \wedge _{\text{m}}^ \circ {\text{ }} - {\text{A}}\sqrt {\text{c}} $ (the value of A for ${\text{AgN}}{{\text{O}}_3}$electrolyte is 1 since the charges on the cation and anion produce after dissociation is 1-1 )
$ \Rightarrow $${ \wedge _{\text{m}}} = 121.6{\text{ }} - 1\sqrt {0.01} $
$ \Rightarrow $${ \wedge _{\text{m}}} = 121.6{\text{ }} - 0.1$ ( the value of $\sqrt {0.01} $ = 0.1 )
$ \Rightarrow $${ \wedge _{\text{m}}} = 121.5$
Now, let’s calculate the value of equivalent conductivity;
$ \Rightarrow $ ${ \wedge _{{\text{eq}}}}$ = $\dfrac{{{ \wedge _{\text{m}}}}}{{\text{n}}}$
$ \Rightarrow $ ${ \wedge _{{\text{eq}}}}$ = $\dfrac{{{ \wedge _{\text{m}}}}}{{\text{n}}}$ (the value of, $ \Rightarrow $ n (valence) = molecular mass/ equivalent mass = 170/170 = 1)
$ \Rightarrow $ ${ \wedge _{{\text{eq}}}}$ = $\dfrac{{121.5}}{1}$
$ \Rightarrow $ ${ \wedge _{{\text{eq}}}}$ = 121.5 ${\text{Sc}}{{\text{m}}^2}{\text{e}}{{\text{q}}^{ - 1}}$
Hence, the correct answer is option (A)i.e., 121.5 ${\text{Sc}}{{\text{m}}^2}{\text{e}}{{\text{q}}^{ - 1}}$
Note: Remember we have given the value ionic mobility (velocity), and not the limiting molar conductivity, otherwise if we just add up the values limiting molar conductivity of corresponding anions and cation we can get the limiting molar conductivity ${\text{AgN}}{{\text{O}}_3}$. But in this question, we had to use the concept of ionic mobility and ionic conductance to calculate limiting molar conductivity.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

