
How can I tell whether a parabola is upward or downward?
Answer
546.9k+ views
Hint: This problem deals with determining the shape of the parabola, whether it is upwards or downwards. The general equation of a parabola is ${x^2} = 4ay$ where, its vertex is the origin and doesn’t have any intercepts, or $y = a{x^2} + bx + c$ where its vertex may not be the origin, and it has intercepts intersecting the coordinate axes.
Complete step-by-step answer:
We know that the general equation of the parabola is given by: $y = a{x^2} + bx + c$.
The given parabola is upwards, when $a > 0$ in $y = a{x^2} + bx + c$. In this case the vertex is the minimum, or lowest point of the parabola. A large positive value of a makes a narrow parabola; a positive value of a which is close to zero makes the parabola wide.
The given parabola is downwards, when $a < 0$ in $y = a{x^2} + bx + c$. In this case the parabola opens upwards.
The function of the coefficient $a$ in the general equation is to make the parabola wider or skinnier, or to turn it upside down, when $a < 0$, and when the coefficient of ${x^2}$ is positive, the parabola opens up, otherwise it opens down.
The parabola is upwards when $a > 0$ in $y = a{x^2} + bx + c$. The parabola is downwards when $a < 0$ in $y = a{x^2} + bx + c$.
Note:
Please note that the graph of a quadratic function is a U-shaped curve which is a parabola. The sign on the coefficient $a$ of the quadratic function affects whether the graph opens up or down. If $a < 0$, the graph makes a frown (opens down) and if $a > 0$ then the graph makes a smile (opens up).
Complete step-by-step answer:
We know that the general equation of the parabola is given by: $y = a{x^2} + bx + c$.
The given parabola is upwards, when $a > 0$ in $y = a{x^2} + bx + c$. In this case the vertex is the minimum, or lowest point of the parabola. A large positive value of a makes a narrow parabola; a positive value of a which is close to zero makes the parabola wide.
The given parabola is downwards, when $a < 0$ in $y = a{x^2} + bx + c$. In this case the parabola opens upwards.
The function of the coefficient $a$ in the general equation is to make the parabola wider or skinnier, or to turn it upside down, when $a < 0$, and when the coefficient of ${x^2}$ is positive, the parabola opens up, otherwise it opens down.
The parabola is upwards when $a > 0$ in $y = a{x^2} + bx + c$. The parabola is downwards when $a < 0$ in $y = a{x^2} + bx + c$.
Note:
Please note that the graph of a quadratic function is a U-shaped curve which is a parabola. The sign on the coefficient $a$ of the quadratic function affects whether the graph opens up or down. If $a < 0$, the graph makes a frown (opens down) and if $a > 0$ then the graph makes a smile (opens up).
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

