
What is $\tan (-{{585}^{\circ }})$ equal to?
A. 1
B. -1
C. $-\sqrt{2}$
D. $-\sqrt{3}$
Answer
592.2k+ views
Hint: We can use negative angle property of tan as given below:
$\tan (-\theta )=-\tan (\theta )$ also use the some conversion for angle in standard angles like $\tan ({{180}^{\circ }}+\theta )=\tan (\theta ) $ and $\tan \left( 2n\pi +\theta \right)=\tan (\theta ) $.
Complete step-by-step solution -
And to write ${{585}^{\circ }}$ in standard value which we know we need to use $\tan \left( 2n\pi +\theta \right)=\tan (\theta )$
Given trigonometric ratio is $\tan (-{{585}^{\circ }})$
We can use first $\tan (-\theta )=-\tan (\theta )$
$\Rightarrow \tan (-{{585}^{\circ }})=-\tan ({{585}^{\circ }})$
Now we can write ${{585}^{\circ }}$ as ${{585}^{\circ }}={{360}^{\circ }}\times 1+{{225}^{\circ }}$
So we will get
$\Rightarrow \tan (-{{585}^{\circ }})=-\tan ({{360}^{\circ }}\times 1+{{225}^{\circ }})$
$\Rightarrow \tan (-{{585}^{\circ }})=-\tan (2\pi \times 1+{{225}^{\circ }})$ $\left\{ \because 2\pi ={{360}^{\circ }} \right\}$
$\Rightarrow \tan (-{{585}^{\circ }})=-\tan ({{225}^{\circ }})$ $\left\{ \because \tan \left( 2n\pi +\theta \right)=\tan (\theta ) \right\}$
$\Rightarrow \tan (-{{585}^{\circ }})=-\tan ({{180}^{\circ }}+{{45}^{\circ }})$ $\left\{ \because \tan ({{180}^{\circ }}+\theta )=\tan (\theta ) \right\}$
$\Rightarrow \tan (-{{585}^{\circ }})=-\tan ({{45}^{\circ }})$
$\Rightarrow \tan (-{{585}^{\circ }})=-1$
Hence option B is correct.
Note: In this question, we need to be careful about how to write an angle as a sum of two angles. We always write it in that way from which we can easily convert a given angle in standard angle values. Standard angle values are ${{0}^{\circ }},{{30}^{\circ }},{{45}^{\circ }},{{60}^{\circ }},{{90}^{\circ }}$.
$\tan (-\theta )=-\tan (\theta )$ also use the some conversion for angle in standard angles like $\tan ({{180}^{\circ }}+\theta )=\tan (\theta ) $ and $\tan \left( 2n\pi +\theta \right)=\tan (\theta ) $.
Complete step-by-step solution -
And to write ${{585}^{\circ }}$ in standard value which we know we need to use $\tan \left( 2n\pi +\theta \right)=\tan (\theta )$
Given trigonometric ratio is $\tan (-{{585}^{\circ }})$
We can use first $\tan (-\theta )=-\tan (\theta )$
$\Rightarrow \tan (-{{585}^{\circ }})=-\tan ({{585}^{\circ }})$
Now we can write ${{585}^{\circ }}$ as ${{585}^{\circ }}={{360}^{\circ }}\times 1+{{225}^{\circ }}$
So we will get
$\Rightarrow \tan (-{{585}^{\circ }})=-\tan ({{360}^{\circ }}\times 1+{{225}^{\circ }})$
$\Rightarrow \tan (-{{585}^{\circ }})=-\tan (2\pi \times 1+{{225}^{\circ }})$ $\left\{ \because 2\pi ={{360}^{\circ }} \right\}$
$\Rightarrow \tan (-{{585}^{\circ }})=-\tan ({{225}^{\circ }})$ $\left\{ \because \tan \left( 2n\pi +\theta \right)=\tan (\theta ) \right\}$
$\Rightarrow \tan (-{{585}^{\circ }})=-\tan ({{180}^{\circ }}+{{45}^{\circ }})$ $\left\{ \because \tan ({{180}^{\circ }}+\theta )=\tan (\theta ) \right\}$
$\Rightarrow \tan (-{{585}^{\circ }})=-\tan ({{45}^{\circ }})$
$\Rightarrow \tan (-{{585}^{\circ }})=-1$
Hence option B is correct.
Note: In this question, we need to be careful about how to write an angle as a sum of two angles. We always write it in that way from which we can easily convert a given angle in standard angle values. Standard angle values are ${{0}^{\circ }},{{30}^{\circ }},{{45}^{\circ }},{{60}^{\circ }},{{90}^{\circ }}$.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

