
Taking the set of natural numbers as the universal set, write down the complements of the following sets:
(i)\[\left\{ {x:x} \right.is\;an\,{\rm{ }}even\,{\rm{ }}natural\,{\rm{ }}\left. {number\,} \right\}\]
(ii)\[\left\{ {x:x} \right.is\;an\,{\rm{ }}odd\,{\rm{ }}natural\,{\rm{ }}\left. {number\,} \right\}\]
(iii)\[\left\{ {x:x} \right.is\;a\,{\rm{ }}positive\,{\rm{ }}multiple\,{\rm{ }}of\,{\rm{ }}\left. 3 \right\}\]
(iv)\[\left\{ {x:x} \right.is\;a\,{\rm{ }}prime\,{\rm{ }}\left. {number\,} \right\}\]
(v)\[\left\{ {x:x} \right.is\;a\,{\rm{ }}natural\,{\rm{ }}number\,{\rm{ }}divisible\,{\rm{ }}by\,{\rm{ }}3{\rm{ }}\,and\,{\rm{ }}\left. 5 \right\}\]
(vi)\[\left\{ {x:x} \right.is\;a\,{\rm{ }}perfect\,{\rm{ }}\left. {square} \right\}\]
(vii)\[\left\{ {x:x} \right.is\;a\,{\rm{ }}perfect\,{\rm{ }}\left. {cube} \right\}\]
(viii) \[\left\{ {x:x + 5 = 8} \right\}\]
(ix) \[\left\{ {x:2x + 5 = 9} \right\}\]
(x) \[\left\{ {x:x \ge 7} \right\}\]
(xi) \[\left\{ {x:x \in N{\rm{ and\, }}2x + 1 > 10} \right\}\]
Answer
554.4k+ views
Hint: Let us take the set of natural numbers as the universal set consisting of both even and odd numbers. Assume the universal set to be \[U = \left\{ {1,2,3,4,5,6,.....} \right\}\] and then accordingly give the complements for each part.
Complete step-by-step answer:
Let us assume universal set to be \[U = \left\{ {1,2,3,4,5,6,.....} \right\}\] , even natural numbers \[E = \left\{ {2,4,6,8,10.....} \right\}\] and odd natural numbers \[O = \left\{ {1,3,5,7,9.....} \right\}\]
(i) As we know, \[U = \left\{ {1,2,3,4,5,6,.....} \right\}\] and \[E = \left\{ {2,4,6,8,10.....} \right\}\]
So, complement of even natural number is \[\left\{ {x:x} \right.is\;an\,{\rm{ }}even\,{\rm{ }}natural\,{\rm{ }}{\left. {number} \right\}^\prime }\] = \[{\left\{ {2,4,6,8,10.....} \right\}^\prime }\]
\[ \Rightarrow U - E = \left\{ {1,2,3,4,5,...} \right\} - \left\{ {2,4,6,8,10,...} \right\}\]
\[ \Rightarrow \left\{ {1,3,5,7,9,....} \right\}\]
\[ \Rightarrow \left\{ {x:x} \right.is\;an\,{\rm{ }}odd\,{\rm{ }}natural\,{\rm{ }}\left. {number\,} \right\}\]
(ii) As we know, \[U = \left\{ {1,2,3,4,5,6,.....} \right\}\] and \[O = \left\{ {1,3,5,7,9.....} \right\}\]
So, the complement of odd natural numbers is \[\left\{ {x:x} \right.is\;an\,{\rm{ odd\, }}natural\,{\rm{ }}{\left. {number\,} \right\}^\prime }\] = \[{\left\{ {1,3,5,7,9.....} \right\}^\prime }\]
\[ \Rightarrow U - O = \left\{ {1,2,3,4,5,...} \right\} - \left\{ {1,3,5,7,9,...} \right\}\]
\[ \Rightarrow \left\{ {2,4,6,8,10,....} \right\}\]
\[ \Rightarrow \left\{ {x:x} \right.is\;an\,{\rm{ even\, }}natural\,{\rm{ }}\left. {number\,} \right\}\]
(iii) As we know, \[U = \left\{ {1,2,3,4,5,6,.....} \right\}\] and positive multiple of 3= \[\left\{ {3,6,9,12,15....} \right\}\]
So, complement of positive multiple of 3 is \[\left\{ {x:x} \right.is\;a\,{\rm{ }}positive\,{\rm{ }}multiple\,{\rm{ }}of\,{\rm{ }}{\left. 3 \right\}^\prime }\] = \[{\left\{ {3,6,9,12,15....} \right\}^\prime }\]
\[ \Rightarrow U - \left\{ {3,6,9,12,15,....} \right\}\]
\[ \Rightarrow \left\{ {1,2,3,4,5,....} \right\} - \left\{ {3,6,9,12,15,....} \right\}\]
\[ \Rightarrow \left\{ {1,2,4,5,7,....} \right\}\]
\[ \Rightarrow \left\{ {x:x} \right.is\;{\rm{ }}not\,{\rm{ }}a\,{\rm{ }}positive\,{\rm{ }}multiple\,{\rm{ }}of{\rm{ }}\left. 3 \right\}\]
(iv) As we know, \[U = \left\{ {1,2,3,4,5,6,.....} \right\}\] and prime number= \[\left\{ {2,3,5,7,11,....} \right\}\]
So, the complement of the prime number is \[\left\{ {x:x} \right.is\;a\,{\rm{ }}\,prime\,{\rm{ }}{\left. {number} \right\}^\prime }\]= \[{\left\{ {2,3,5,7,11,....} \right\}^\prime }\]
\[ \Rightarrow U - \left\{ {2,3,5,7,11,....} \right\}\]
\[ \Rightarrow \left\{ {1,2,3,4,5,....} \right\} - \left\{ {2,3,5,7,11,....} \right\}\]
\[ \Rightarrow \left\{ {1,4,6,8,9,....} \right\}\]
\[ \Rightarrow \left\{ {x:x} \right.is\;{\rm{ }}not\,{\rm{ }}a\,{\rm{ }}prime\,\left. {{\rm{ }}number} \right\}\] or \[ \Rightarrow \left\{ {x:x} \right.is\;{\rm{ }}a\,{\rm{ composite}}\left. {{\rm{ }}number} \right\}\]
(v) As we know, \[U = \left\{ {1,2,3,4,5,6,.....} \right\}\] and natural numbers divisible by 3 and 5= \[\left\{ {15,30,45,60,75....} \right\}\]
So, complement of natural number divisible by 3 and 5 is:\[\left\{ {x:x} \right.is\;a\,{\rm{ }}natural\,{\rm{ }}number\,{\rm{ }}divisible\,{\rm{ }}by\,{\rm{ }}\,3\,{\rm{ }}\,and\,{\rm{ }}{\left. 5 \right\}^\prime }\]= \[{\left\{ {15,30,45,60,75....} \right\}^\prime }\]
\[ \Rightarrow U - \left\{ {15,30,45,60,75....} \right\}\]
\[ \Rightarrow \left\{ {1,2,3,4,5,....} \right\} - \left\{ {15,30,45,60,75....} \right\}\]
\[ \Rightarrow \left\{ {1,2,3,4,5,6,....} \right\}\]
\[ \Rightarrow \left\{ {x:x} \right.is\;{\rm{ }}\,not\,{\rm{ }}a\,{\rm{ }}natural\,{\rm{ }}number\,{\rm{ }}divisible\,{\rm{ }}by{\rm{ }}3{\rm{ }}\,and\,{\rm{ }}\left. 5 \right\}\]
(vi) As we know, \[U = \left\{ {1,2,3,4,5,6,.....} \right\}\] and perfect square= \[\left\{ {1,4,9,16,25,....} \right\}\]
So, the complement of a perfect square is \[\left\{ {x:x} \right.is\;a\,{\rm{ }}perfect\,{\rm{ }}{\left. {square} \right\}^\prime }\]= \[{\left\{ {1,4,9,16,25,....} \right\}^\prime }\]
\[ \Rightarrow U - \left\{ {1,4,9,16,25....} \right\}\]
\[ \Rightarrow \left\{ {1,2,3,4,5,....} \right\} - \left\{ {1,4,9,16,25,....} \right\}\]
\[ \Rightarrow \left\{ {2,3,5,6,7,8....} \right\}\]
\[ \Rightarrow \left\{ {x:x} \right.is\;{\rm{ not\, }}a\,{\rm{ }}perfect\,{\rm{ }}\left. {square} \right\}\]
(vii) As we know, \[U = \left\{ {1,2,3,4,5,6,.....} \right\}\] and perfect cube= \[\left\{ {1,8,27,64,125,....} \right\}\]
So, the complement of the perfect cube is \[\left\{ {x:x} \right.is\;a\,{\rm{ }}perfect\,{\rm{ }}{\left. {cube} \right\}^\prime }\]= \[{\left\{ {1,8,27,64,125,....} \right\}^\prime }\]
\[ \Rightarrow U - \left\{ {1,8,27,64,125,....} \right\}\]
\[ \Rightarrow \left\{ {1,2,3,4,5,....} \right\} - \left\{ {1,8,27,64,125,....} \right\}\]
\[ \Rightarrow \left\{ {2,3,4,5,6,7,9....} \right\}\]
\[ \Rightarrow \left\{ {x:x} \right.is\;{\rm{ \,not\, }}a\,{\rm{ }}perfect\,{\rm{ }}\left. {cube} \right\}\]
(viii) As we know, \[U = \left\{ {1,2,3,4,5,6,.....} \right\}\] and \[\left\{ {x:x + 5 = 8} \right\}\] = \[x + 5 = 8\therefore x = 3\]
Hence, \[\left\{ {x:x = 3} \right\}\]
So, complement of \[\left\{ {x:x = 3} \right\}\] is \[{\left\{ {x:x = 3} \right\}^\prime }\]
\[ \Rightarrow U - \left\{ 3 \right\}\]
\[ \Rightarrow \left\{ {1,2,3,4,5,....} \right\} - \left\{ 3 \right\}\]
\[ \Rightarrow \left\{ {1,2,4,5,6,....} \right\}\]
\[ \Rightarrow \left\{ {x:x \ne 3} \right\}\]
(ix) As we know, \[U = \left\{ {1,2,3,4,5,6,.....} \right\}\] and \[\left\{ {x:2x + 5 = 9} \right\}\] = \[2x = 4\therefore x = 2\]
Hence, \[\left\{ {x:x = 2} \right\}\]
So, complement of \[\left\{ {x:x = 2} \right\}\] is \[{\left\{ {x:x = 2} \right\}^\prime }\]
\[ \Rightarrow U - \left\{ 2 \right\}\]
\[ \Rightarrow \left\{ {1,2,3,4,5,....} \right\} - \left\{ 2 \right\}\]
\[ \Rightarrow \left\{ {1,3,4,5,6,....} \right\}\]
\[ \Rightarrow \left\{ {x:x \ne 2} \right\}\]
(x) As we know, \[U = \left\{ {1,2,3,4,5,6,.....} \right\}\] and \[\left\{ {x:x \ge 7} \right\}\] = \[\left\{ {7,8,9,10,11,....} \right\}\]
So, complement of \[\left\{ {x:x \ge 7} \right\}\] is \[{\left\{ {x:x \ge 7} \right\}^\prime }\] = \[{\left\{ {7,8,9,10,11,....} \right\}^\prime }\]
\[ \Rightarrow U - \left\{ {7,8,9,10,11....} \right\}\]
\[ \Rightarrow \left\{ {1,2,3,4,5,6,7,8,9....} \right\} - \left\{ {7,8,9,10,11....} \right\}\]
\[ \Rightarrow \left\{ {1,2,3,4,5,6,.....} \right\}\]
\[ \Rightarrow \left\{ {x:x < 7} \right\}\]
(xi) As we know, \[U = \left\{ {1,2,3,4,5,6,.....} \right\}\] and \[\left\{ {x:x \in N{\rm{ \,and\, }}2x + 1 > 10} \right\}\] = \[2x > 9 = x > 4.5\]
So, complement of \[\left\{ {x:x \in N{\rm{ \,and\, }} 2x + 1 > 10} \right\}\] is \[{\left\{ {x:x \in N{\rm{\, and\, }}2x + 1 > 10} \right\}^\prime }\]
\[ \Rightarrow U - \left\{ {5,6,7,8,9....} \right\}\]
\[ \Rightarrow \left\{ {1,2,3,4,5,....} \right\} - \left\{ {5,6,7,8,9....} \right\}\]
\[ \Rightarrow \left\{ {1,2,3,4.5,.....} \right\}\]
\[ \Rightarrow \left\{ {x:x \le 4.5} \right\}\]
Note: In these types of questions we should first write all the given sets as defined and then do its complement that is we should not include the given sets from the universal set in the answers. This is one of the best ways to solve these kinds of problems.
Complete step-by-step answer:
Let us assume universal set to be \[U = \left\{ {1,2,3,4,5,6,.....} \right\}\] , even natural numbers \[E = \left\{ {2,4,6,8,10.....} \right\}\] and odd natural numbers \[O = \left\{ {1,3,5,7,9.....} \right\}\]
(i) As we know, \[U = \left\{ {1,2,3,4,5,6,.....} \right\}\] and \[E = \left\{ {2,4,6,8,10.....} \right\}\]
So, complement of even natural number is \[\left\{ {x:x} \right.is\;an\,{\rm{ }}even\,{\rm{ }}natural\,{\rm{ }}{\left. {number} \right\}^\prime }\] = \[{\left\{ {2,4,6,8,10.....} \right\}^\prime }\]
\[ \Rightarrow U - E = \left\{ {1,2,3,4,5,...} \right\} - \left\{ {2,4,6,8,10,...} \right\}\]
\[ \Rightarrow \left\{ {1,3,5,7,9,....} \right\}\]
\[ \Rightarrow \left\{ {x:x} \right.is\;an\,{\rm{ }}odd\,{\rm{ }}natural\,{\rm{ }}\left. {number\,} \right\}\]
(ii) As we know, \[U = \left\{ {1,2,3,4,5,6,.....} \right\}\] and \[O = \left\{ {1,3,5,7,9.....} \right\}\]
So, the complement of odd natural numbers is \[\left\{ {x:x} \right.is\;an\,{\rm{ odd\, }}natural\,{\rm{ }}{\left. {number\,} \right\}^\prime }\] = \[{\left\{ {1,3,5,7,9.....} \right\}^\prime }\]
\[ \Rightarrow U - O = \left\{ {1,2,3,4,5,...} \right\} - \left\{ {1,3,5,7,9,...} \right\}\]
\[ \Rightarrow \left\{ {2,4,6,8,10,....} \right\}\]
\[ \Rightarrow \left\{ {x:x} \right.is\;an\,{\rm{ even\, }}natural\,{\rm{ }}\left. {number\,} \right\}\]
(iii) As we know, \[U = \left\{ {1,2,3,4,5,6,.....} \right\}\] and positive multiple of 3= \[\left\{ {3,6,9,12,15....} \right\}\]
So, complement of positive multiple of 3 is \[\left\{ {x:x} \right.is\;a\,{\rm{ }}positive\,{\rm{ }}multiple\,{\rm{ }}of\,{\rm{ }}{\left. 3 \right\}^\prime }\] = \[{\left\{ {3,6,9,12,15....} \right\}^\prime }\]
\[ \Rightarrow U - \left\{ {3,6,9,12,15,....} \right\}\]
\[ \Rightarrow \left\{ {1,2,3,4,5,....} \right\} - \left\{ {3,6,9,12,15,....} \right\}\]
\[ \Rightarrow \left\{ {1,2,4,5,7,....} \right\}\]
\[ \Rightarrow \left\{ {x:x} \right.is\;{\rm{ }}not\,{\rm{ }}a\,{\rm{ }}positive\,{\rm{ }}multiple\,{\rm{ }}of{\rm{ }}\left. 3 \right\}\]
(iv) As we know, \[U = \left\{ {1,2,3,4,5,6,.....} \right\}\] and prime number= \[\left\{ {2,3,5,7,11,....} \right\}\]
So, the complement of the prime number is \[\left\{ {x:x} \right.is\;a\,{\rm{ }}\,prime\,{\rm{ }}{\left. {number} \right\}^\prime }\]= \[{\left\{ {2,3,5,7,11,....} \right\}^\prime }\]
\[ \Rightarrow U - \left\{ {2,3,5,7,11,....} \right\}\]
\[ \Rightarrow \left\{ {1,2,3,4,5,....} \right\} - \left\{ {2,3,5,7,11,....} \right\}\]
\[ \Rightarrow \left\{ {1,4,6,8,9,....} \right\}\]
\[ \Rightarrow \left\{ {x:x} \right.is\;{\rm{ }}not\,{\rm{ }}a\,{\rm{ }}prime\,\left. {{\rm{ }}number} \right\}\] or \[ \Rightarrow \left\{ {x:x} \right.is\;{\rm{ }}a\,{\rm{ composite}}\left. {{\rm{ }}number} \right\}\]
(v) As we know, \[U = \left\{ {1,2,3,4,5,6,.....} \right\}\] and natural numbers divisible by 3 and 5= \[\left\{ {15,30,45,60,75....} \right\}\]
So, complement of natural number divisible by 3 and 5 is:\[\left\{ {x:x} \right.is\;a\,{\rm{ }}natural\,{\rm{ }}number\,{\rm{ }}divisible\,{\rm{ }}by\,{\rm{ }}\,3\,{\rm{ }}\,and\,{\rm{ }}{\left. 5 \right\}^\prime }\]= \[{\left\{ {15,30,45,60,75....} \right\}^\prime }\]
\[ \Rightarrow U - \left\{ {15,30,45,60,75....} \right\}\]
\[ \Rightarrow \left\{ {1,2,3,4,5,....} \right\} - \left\{ {15,30,45,60,75....} \right\}\]
\[ \Rightarrow \left\{ {1,2,3,4,5,6,....} \right\}\]
\[ \Rightarrow \left\{ {x:x} \right.is\;{\rm{ }}\,not\,{\rm{ }}a\,{\rm{ }}natural\,{\rm{ }}number\,{\rm{ }}divisible\,{\rm{ }}by{\rm{ }}3{\rm{ }}\,and\,{\rm{ }}\left. 5 \right\}\]
(vi) As we know, \[U = \left\{ {1,2,3,4,5,6,.....} \right\}\] and perfect square= \[\left\{ {1,4,9,16,25,....} \right\}\]
So, the complement of a perfect square is \[\left\{ {x:x} \right.is\;a\,{\rm{ }}perfect\,{\rm{ }}{\left. {square} \right\}^\prime }\]= \[{\left\{ {1,4,9,16,25,....} \right\}^\prime }\]
\[ \Rightarrow U - \left\{ {1,4,9,16,25....} \right\}\]
\[ \Rightarrow \left\{ {1,2,3,4,5,....} \right\} - \left\{ {1,4,9,16,25,....} \right\}\]
\[ \Rightarrow \left\{ {2,3,5,6,7,8....} \right\}\]
\[ \Rightarrow \left\{ {x:x} \right.is\;{\rm{ not\, }}a\,{\rm{ }}perfect\,{\rm{ }}\left. {square} \right\}\]
(vii) As we know, \[U = \left\{ {1,2,3,4,5,6,.....} \right\}\] and perfect cube= \[\left\{ {1,8,27,64,125,....} \right\}\]
So, the complement of the perfect cube is \[\left\{ {x:x} \right.is\;a\,{\rm{ }}perfect\,{\rm{ }}{\left. {cube} \right\}^\prime }\]= \[{\left\{ {1,8,27,64,125,....} \right\}^\prime }\]
\[ \Rightarrow U - \left\{ {1,8,27,64,125,....} \right\}\]
\[ \Rightarrow \left\{ {1,2,3,4,5,....} \right\} - \left\{ {1,8,27,64,125,....} \right\}\]
\[ \Rightarrow \left\{ {2,3,4,5,6,7,9....} \right\}\]
\[ \Rightarrow \left\{ {x:x} \right.is\;{\rm{ \,not\, }}a\,{\rm{ }}perfect\,{\rm{ }}\left. {cube} \right\}\]
(viii) As we know, \[U = \left\{ {1,2,3,4,5,6,.....} \right\}\] and \[\left\{ {x:x + 5 = 8} \right\}\] = \[x + 5 = 8\therefore x = 3\]
Hence, \[\left\{ {x:x = 3} \right\}\]
So, complement of \[\left\{ {x:x = 3} \right\}\] is \[{\left\{ {x:x = 3} \right\}^\prime }\]
\[ \Rightarrow U - \left\{ 3 \right\}\]
\[ \Rightarrow \left\{ {1,2,3,4,5,....} \right\} - \left\{ 3 \right\}\]
\[ \Rightarrow \left\{ {1,2,4,5,6,....} \right\}\]
\[ \Rightarrow \left\{ {x:x \ne 3} \right\}\]
(ix) As we know, \[U = \left\{ {1,2,3,4,5,6,.....} \right\}\] and \[\left\{ {x:2x + 5 = 9} \right\}\] = \[2x = 4\therefore x = 2\]
Hence, \[\left\{ {x:x = 2} \right\}\]
So, complement of \[\left\{ {x:x = 2} \right\}\] is \[{\left\{ {x:x = 2} \right\}^\prime }\]
\[ \Rightarrow U - \left\{ 2 \right\}\]
\[ \Rightarrow \left\{ {1,2,3,4,5,....} \right\} - \left\{ 2 \right\}\]
\[ \Rightarrow \left\{ {1,3,4,5,6,....} \right\}\]
\[ \Rightarrow \left\{ {x:x \ne 2} \right\}\]
(x) As we know, \[U = \left\{ {1,2,3,4,5,6,.....} \right\}\] and \[\left\{ {x:x \ge 7} \right\}\] = \[\left\{ {7,8,9,10,11,....} \right\}\]
So, complement of \[\left\{ {x:x \ge 7} \right\}\] is \[{\left\{ {x:x \ge 7} \right\}^\prime }\] = \[{\left\{ {7,8,9,10,11,....} \right\}^\prime }\]
\[ \Rightarrow U - \left\{ {7,8,9,10,11....} \right\}\]
\[ \Rightarrow \left\{ {1,2,3,4,5,6,7,8,9....} \right\} - \left\{ {7,8,9,10,11....} \right\}\]
\[ \Rightarrow \left\{ {1,2,3,4,5,6,.....} \right\}\]
\[ \Rightarrow \left\{ {x:x < 7} \right\}\]
(xi) As we know, \[U = \left\{ {1,2,3,4,5,6,.....} \right\}\] and \[\left\{ {x:x \in N{\rm{ \,and\, }}2x + 1 > 10} \right\}\] = \[2x > 9 = x > 4.5\]
So, complement of \[\left\{ {x:x \in N{\rm{ \,and\, }} 2x + 1 > 10} \right\}\] is \[{\left\{ {x:x \in N{\rm{\, and\, }}2x + 1 > 10} \right\}^\prime }\]
\[ \Rightarrow U - \left\{ {5,6,7,8,9....} \right\}\]
\[ \Rightarrow \left\{ {1,2,3,4,5,....} \right\} - \left\{ {5,6,7,8,9....} \right\}\]
\[ \Rightarrow \left\{ {1,2,3,4.5,.....} \right\}\]
\[ \Rightarrow \left\{ {x:x \le 4.5} \right\}\]
Note: In these types of questions we should first write all the given sets as defined and then do its complement that is we should not include the given sets from the universal set in the answers. This is one of the best ways to solve these kinds of problems.
Watch videos on
Taking the set of natural numbers as the universal set, write down the complements of the following sets:
(i)\[\left\{ {x:x} \right.is\;an\,{\rm{ }}even\,{\rm{ }}natural\,{\rm{ }}\left. {number\,} \right\}\]
(ii)\[\left\{ {x:x} \right.is\;an\,{\rm{ }}odd\,{\rm{ }}natural\,{\rm{ }}\left. {number\,} \right\}\]
(iii)\[\left\{ {x:x} \right.is\;a\,{\rm{ }}positive\,{\rm{ }}multiple\,{\rm{ }}of\,{\rm{ }}\left. 3 \right\}\]
(iv)\[\left\{ {x:x} \right.is\;a\,{\rm{ }}prime\,{\rm{ }}\left. {number\,} \right\}\]
(v)\[\left\{ {x:x} \right.is\;a\,{\rm{ }}natural\,{\rm{ }}number\,{\rm{ }}divisible\,{\rm{ }}by\,{\rm{ }}3{\rm{ }}\,and\,{\rm{ }}\left. 5 \right\}\]
(vi)\[\left\{ {x:x} \right.is\;a\,{\rm{ }}perfect\,{\rm{ }}\left. {square} \right\}\]
(vii)\[\left\{ {x:x} \right.is\;a\,{\rm{ }}perfect\,{\rm{ }}\left. {cube} \right\}\]
(viii) \[\left\{ {x:x + 5 = 8} \right\}\]
(ix) \[\left\{ {x:2x + 5 = 9} \right\}\]
(x) \[\left\{ {x:x \ge 7} \right\}\]
(xi) \[\left\{ {x:x \in N{\rm{ and\, }}2x + 1 > 10} \right\}\]
(i)\[\left\{ {x:x} \right.is\;an\,{\rm{ }}even\,{\rm{ }}natural\,{\rm{ }}\left. {number\,} \right\}\]
(ii)\[\left\{ {x:x} \right.is\;an\,{\rm{ }}odd\,{\rm{ }}natural\,{\rm{ }}\left. {number\,} \right\}\]
(iii)\[\left\{ {x:x} \right.is\;a\,{\rm{ }}positive\,{\rm{ }}multiple\,{\rm{ }}of\,{\rm{ }}\left. 3 \right\}\]
(iv)\[\left\{ {x:x} \right.is\;a\,{\rm{ }}prime\,{\rm{ }}\left. {number\,} \right\}\]
(v)\[\left\{ {x:x} \right.is\;a\,{\rm{ }}natural\,{\rm{ }}number\,{\rm{ }}divisible\,{\rm{ }}by\,{\rm{ }}3{\rm{ }}\,and\,{\rm{ }}\left. 5 \right\}\]
(vi)\[\left\{ {x:x} \right.is\;a\,{\rm{ }}perfect\,{\rm{ }}\left. {square} \right\}\]
(vii)\[\left\{ {x:x} \right.is\;a\,{\rm{ }}perfect\,{\rm{ }}\left. {cube} \right\}\]
(viii) \[\left\{ {x:x + 5 = 8} \right\}\]
(ix) \[\left\{ {x:2x + 5 = 9} \right\}\]
(x) \[\left\{ {x:x \ge 7} \right\}\]
(xi) \[\left\{ {x:x \in N{\rm{ and\, }}2x + 1 > 10} \right\}\]

Class 11 MATHS NCERT EXERCISE 1.5 (Question - 3) | Sets Class 11 Chapter 1| NCERT | Ratan Kalra Sir
Subscribe
likes
115 Views
2 years ago
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

