
Suppose 4 distinct positive integers ${a_1},{a_2},{a_3},{a_4}$ are in G.P. . Let ${b_1} = {a_1}{\text{, }}{b_2} = {b_1} + {a_2}{\text{, }}{{\text{b}}_3} = {b_2} + {a_3},{\text{ }}{{\text{b}}_4} = {b_3} + {a_4}$ , then;
Statement $\left( {\text{I}} \right)$ : The numbers ${b_1},{b_2},{b_3},{b_4}$ are neither in A.P. nor in G.P.
Statement $\left( {{\text{II}}} \right)$ : The numbers ${b_1},{b_2},{b_3},{b_4}$ are in H.P.
$\left( 1 \right)$ Statement I is true and statement II is also true ; statement II is the correct explanation of statement I .
$\left( 2 \right)$ Statement I is true and statement II is also true ; statement II is not the correct explanation of statement I .
$\left( 3 \right)$ Statement I is true and statement II is false
$\left( 4 \right)$ Statement I is false and statement II is true
Answer
506.1k+ views
Hint: In order to solve this question, we should be familiar with the basic properties of Geometric progression (G.P.) and Arithmetic progression (A.P.) . $\left( 1 \right)$ Geometric progression is a type of sequence in which each next term can be found out by multiplying the previous term with a constant number. It is generally represented like: $\left\{ {a,{\text{ }}ar,{\text{ }}a{r^2},{\text{ }}a{r^3},{\text{ }}a{r^4}..........} \right\}$ where $a$ is the first term and $r$ is the common ratio which can be calculated as: $r = \dfrac{{{\text{Second term}}}}{{{\text{First term}}}}$ . $\left( 2 \right)$ Arithmetic progression is a type of sequence in which the difference of any two successive or consecutive numbers is always constant, that constant value is termed as a common difference and is denoted by $d$ . An arithmetic sequence in terms of common difference is represented as: $\left\{ {a,{\text{ }}a + d,{\text{ }}a + 2d,{\text{ }}a + 3d,...........a + \left( {n - 1} \right)d} \right\}$ .
Complete step-by-step solution:
Since ${a_1},{a_2},{a_3},{a_4}$ are in G.P. ( given ) , then by the basic properties of G.P. ;
$ \Rightarrow {a_1}{\text{ , }}{a_2} = {a_1}r{\text{ , }}{a_3} = {a_1}{r^2}{\text{ , }}{a_4} = {a_1}{r^3}$
Now, let us calculate the values of ${b_1},{b_2},{b_3},{b_4}$ in terms of ${a_1},{a_2},{a_3},{a_4}$ ;
$\because {b_1} = {a_1}{\text{ }}......\left( 1 \right)$
$ \Rightarrow {b_2} = {b_1} + {a_2} = {a_1} + {a_2}$ (Putting the value of ${b_1}$ from equation $\left( 1 \right)$ )
Put the value of ${a_2} = {a_1}r$ , in the above equation we get;
$ \Rightarrow {b_2} = {a_1} + {a_1}r = {a_1}\left( {1 + r} \right)$
$\therefore {b_2} = {a_1}\left( {1 + r} \right){\text{ }}......\left( 2 \right)$
$ \Rightarrow {b_3} = {b_2} + {a_3} = {a_1} + {a_2} + {a_3}$ (Putting the value of ${b_2}$ from equation $\left( 2 \right)$ )
Put the value of ${a_3} = {a_1}{r^2}$ , in the above equation we get;
$ \Rightarrow {b_3} = {a_1}\left( {1 + r} \right) + {a_1}{r^2}$
$ \Rightarrow {b_3} = {a_1}\left( {1 + r + {r^2}} \right){\text{ }}......\left( 3 \right)$
$ \Rightarrow {b_4} = {b_3} + {a_4} = {a_1} + {a_2} + {a_3} + {a_4}$ (Putting the value of ${b_3}$ from equation $\left( 3 \right)$ )
Put the value of ${a_4} = {a_1}{r^3}$ , in the above equation we get;
$ \Rightarrow {b_4} = {a_1}\left( {1 + r + {r^2}} \right) + {a_1}{r^3}$
$ \Rightarrow {b_4} = {a_1}\left( {1 + r + {r^2} + {r^3}} \right){\text{ }}......\left( 4 \right)$
Let us check for both the given statements now;
Statement $\left( {\text{I}} \right)$ : The numbers ${b_1},{b_2},{b_3},{b_4}$ are neither in A.P. nor in G.P.
$\left( 1 \right)$ If ${b_1},{b_2},{b_3},{b_4}$ are in A.P. then the below condition must be true;
$ \Rightarrow {b_2} - {b_1} = {b_3} - {b_2}$ (must be true if in A.P.)
Substituting the values of ${b_1},{b_2},{b_3}$ from equation $\left( 1 \right),\left( 2 \right){\text{ and}}\left( 3 \right)$ ;
$ \Rightarrow {a_1}\left( {1 + r} \right) - {a_1} = {a_1} + {a_1}r + {a_1}{r^2} - {a_1} - {a_1}r$
On further simplification;
$ \Rightarrow {a_1}r \ne {a_1}{r^2}$
Therefore, ${b_1},{b_2},{b_3},{b_4}$ are not in A.P.
$\left( 2 \right)$ If ${b_1},{b_2},{b_3},{b_4}$ are in G.P. then the below condition must be true;
$ \Rightarrow \dfrac{{{b_2}}}{{{b_1}}} = \dfrac{{{b_3}}}{{{b_2}}}$ (must be true if in G.P.)
$ \Rightarrow \dfrac{{a\left( {1 + r} \right)}}{a} = \dfrac{{a\left( {1 + r + {r^2}} \right)}}{{a\left( {1 + r} \right)}}$
$ \Rightarrow 1 + r \ne \dfrac{{1 + r + {r^2}}}{{1 + r}}$
Therefore, ${b_1},{b_2},{b_3},{b_4}$ are not in G.P.
Hence statement I is true that ${b_1},{b_2},{b_3},{b_4}$ are neither in A.P. nor in G.P.
Statement $\left( {{\text{II}}} \right)$ : The numbers ${b_1},{b_2},{b_3},{b_4}$ are in H.P.
If ${b_1},{b_2},{b_3},{b_4}$ are in H.P. then the below condition must be true;
$ \Rightarrow \dfrac{1}{{{b_2}}} - \dfrac{1}{{{b_1}}} = \dfrac{1}{{{b_3}}} - \dfrac{1}{{{b_2}}}$ (must be true if in H.P.)
$ \Rightarrow \dfrac{1}{{a\left( {1 + r} \right)}} - \dfrac{1}{a} = \dfrac{1}{{a\left( {1 + r + {r^2}} \right)}} - \dfrac{1}{{a\left( {1 + r} \right)}}$
On further simplification;
$ \Rightarrow \dfrac{1}{a}\left( {\dfrac{1}{{1 + r}} - 1} \right) = \dfrac{1}{a}\left( {\dfrac{1}{{\left( {1 + r + {r^2}} \right)}} - \dfrac{1}{{\left( {1 + r} \right)}}} \right)$
Further simplifying the above equation;
$ \Rightarrow \dfrac{1}{a}\left( {\dfrac{{ - r}}{{1 + r}}} \right) = \dfrac{1}{a}\left( {\dfrac{{ - {r^2}}}{{\left( {1 + r} \right)\left( {1 + r + {r^2}} \right)}}} \right)$
$ \Rightarrow \dfrac{{ - r}}{{a\left( {1 + r} \right)}} = \dfrac{{ - {r^2}}}{{a\left( {1 + r + {r^2}} \right)}}$
After some arithmetic simplification, we get;
$ \Rightarrow \dfrac{1}{{\left( {1 + r} \right)}} \ne \dfrac{{ - r}}{{\left( {1 + r + {r^2}} \right)}}$
Means; $\dfrac{1}{{{b_2}}} - \dfrac{1}{{{b_1}}} \ne \dfrac{1}{{{b_3}}} - \dfrac{1}{{{b_2}}}$
Therefore, the numbers ${b_1},{b_2},{b_3},{b_4}$ are not in H.P. , so statement II is not true.
So the conclusion is, statement I is true but statement II is false.
Hence the correct answer for this question is option $\left( 3 \right)$.
Note: Basic knowledge about properties and formulae of G.P. ,H.P., A.P. is very helpful for solving this
type of questions. $\left( 1 \right)$ Harmonic progression (H.P.) : Harmonic progression is a type of sequence which is obtained by taking the reciprocals of the A.P. , example: if $a,b,c,d$ is in A.P. then $\dfrac{1}{a},\dfrac{1}{b},\dfrac{1}{c},\dfrac{1}{d}$ will be in H.P. The ${n^{th}}$ term of a H.P. is given by: $\dfrac{1}{{\left[ {a + \left( {n - 1} \right)d} \right]}}$ (reciprocal of ${n^{th}}$ term of A.P.) . Sum of $n$ terms of H.P. is given by: ${S_n} = \dfrac{1}{d}\ln \left\{ {\dfrac{{2a + \left( {2n - 1} \right)d}}{{2a - d}}} \right\}$ . $\left( 2 \right)$ Geometric progression: The ${n^{th}}$ term of a G.P. is given by ${a_r} = a{r^{n - 1}}$ . The formula for sum of $n$ terms of a G.P. is given by: ${S_n} = a\left[ {\dfrac{{\left( {{r^n} - 1} \right)}}{{\left( {r - 1} \right)}}} \right]{\text{ if }}r \ne 1$ . $\left( 3 \right)$ Arithmetic progression: The ${n^{th}}$ term of a A.P. is given by ${a_n} = a + \left( {n - 1} \right)d$ . The formula for sum of $n$ terms of a A.P. is given by ${S_n} = \dfrac{n}{2}\left[ {2a + \left( {n - 1} \right)d} \right]$ .
Complete step-by-step solution:
Since ${a_1},{a_2},{a_3},{a_4}$ are in G.P. ( given ) , then by the basic properties of G.P. ;
$ \Rightarrow {a_1}{\text{ , }}{a_2} = {a_1}r{\text{ , }}{a_3} = {a_1}{r^2}{\text{ , }}{a_4} = {a_1}{r^3}$
Now, let us calculate the values of ${b_1},{b_2},{b_3},{b_4}$ in terms of ${a_1},{a_2},{a_3},{a_4}$ ;
$\because {b_1} = {a_1}{\text{ }}......\left( 1 \right)$
$ \Rightarrow {b_2} = {b_1} + {a_2} = {a_1} + {a_2}$ (Putting the value of ${b_1}$ from equation $\left( 1 \right)$ )
Put the value of ${a_2} = {a_1}r$ , in the above equation we get;
$ \Rightarrow {b_2} = {a_1} + {a_1}r = {a_1}\left( {1 + r} \right)$
$\therefore {b_2} = {a_1}\left( {1 + r} \right){\text{ }}......\left( 2 \right)$
$ \Rightarrow {b_3} = {b_2} + {a_3} = {a_1} + {a_2} + {a_3}$ (Putting the value of ${b_2}$ from equation $\left( 2 \right)$ )
Put the value of ${a_3} = {a_1}{r^2}$ , in the above equation we get;
$ \Rightarrow {b_3} = {a_1}\left( {1 + r} \right) + {a_1}{r^2}$
$ \Rightarrow {b_3} = {a_1}\left( {1 + r + {r^2}} \right){\text{ }}......\left( 3 \right)$
$ \Rightarrow {b_4} = {b_3} + {a_4} = {a_1} + {a_2} + {a_3} + {a_4}$ (Putting the value of ${b_3}$ from equation $\left( 3 \right)$ )
Put the value of ${a_4} = {a_1}{r^3}$ , in the above equation we get;
$ \Rightarrow {b_4} = {a_1}\left( {1 + r + {r^2}} \right) + {a_1}{r^3}$
$ \Rightarrow {b_4} = {a_1}\left( {1 + r + {r^2} + {r^3}} \right){\text{ }}......\left( 4 \right)$
Let us check for both the given statements now;
Statement $\left( {\text{I}} \right)$ : The numbers ${b_1},{b_2},{b_3},{b_4}$ are neither in A.P. nor in G.P.
$\left( 1 \right)$ If ${b_1},{b_2},{b_3},{b_4}$ are in A.P. then the below condition must be true;
$ \Rightarrow {b_2} - {b_1} = {b_3} - {b_2}$ (must be true if in A.P.)
Substituting the values of ${b_1},{b_2},{b_3}$ from equation $\left( 1 \right),\left( 2 \right){\text{ and}}\left( 3 \right)$ ;
$ \Rightarrow {a_1}\left( {1 + r} \right) - {a_1} = {a_1} + {a_1}r + {a_1}{r^2} - {a_1} - {a_1}r$
On further simplification;
$ \Rightarrow {a_1}r \ne {a_1}{r^2}$
Therefore, ${b_1},{b_2},{b_3},{b_4}$ are not in A.P.
$\left( 2 \right)$ If ${b_1},{b_2},{b_3},{b_4}$ are in G.P. then the below condition must be true;
$ \Rightarrow \dfrac{{{b_2}}}{{{b_1}}} = \dfrac{{{b_3}}}{{{b_2}}}$ (must be true if in G.P.)
$ \Rightarrow \dfrac{{a\left( {1 + r} \right)}}{a} = \dfrac{{a\left( {1 + r + {r^2}} \right)}}{{a\left( {1 + r} \right)}}$
$ \Rightarrow 1 + r \ne \dfrac{{1 + r + {r^2}}}{{1 + r}}$
Therefore, ${b_1},{b_2},{b_3},{b_4}$ are not in G.P.
Hence statement I is true that ${b_1},{b_2},{b_3},{b_4}$ are neither in A.P. nor in G.P.
Statement $\left( {{\text{II}}} \right)$ : The numbers ${b_1},{b_2},{b_3},{b_4}$ are in H.P.
If ${b_1},{b_2},{b_3},{b_4}$ are in H.P. then the below condition must be true;
$ \Rightarrow \dfrac{1}{{{b_2}}} - \dfrac{1}{{{b_1}}} = \dfrac{1}{{{b_3}}} - \dfrac{1}{{{b_2}}}$ (must be true if in H.P.)
$ \Rightarrow \dfrac{1}{{a\left( {1 + r} \right)}} - \dfrac{1}{a} = \dfrac{1}{{a\left( {1 + r + {r^2}} \right)}} - \dfrac{1}{{a\left( {1 + r} \right)}}$
On further simplification;
$ \Rightarrow \dfrac{1}{a}\left( {\dfrac{1}{{1 + r}} - 1} \right) = \dfrac{1}{a}\left( {\dfrac{1}{{\left( {1 + r + {r^2}} \right)}} - \dfrac{1}{{\left( {1 + r} \right)}}} \right)$
Further simplifying the above equation;
$ \Rightarrow \dfrac{1}{a}\left( {\dfrac{{ - r}}{{1 + r}}} \right) = \dfrac{1}{a}\left( {\dfrac{{ - {r^2}}}{{\left( {1 + r} \right)\left( {1 + r + {r^2}} \right)}}} \right)$
$ \Rightarrow \dfrac{{ - r}}{{a\left( {1 + r} \right)}} = \dfrac{{ - {r^2}}}{{a\left( {1 + r + {r^2}} \right)}}$
After some arithmetic simplification, we get;
$ \Rightarrow \dfrac{1}{{\left( {1 + r} \right)}} \ne \dfrac{{ - r}}{{\left( {1 + r + {r^2}} \right)}}$
Means; $\dfrac{1}{{{b_2}}} - \dfrac{1}{{{b_1}}} \ne \dfrac{1}{{{b_3}}} - \dfrac{1}{{{b_2}}}$
Therefore, the numbers ${b_1},{b_2},{b_3},{b_4}$ are not in H.P. , so statement II is not true.
So the conclusion is, statement I is true but statement II is false.
Hence the correct answer for this question is option $\left( 3 \right)$.
Note: Basic knowledge about properties and formulae of G.P. ,H.P., A.P. is very helpful for solving this
type of questions. $\left( 1 \right)$ Harmonic progression (H.P.) : Harmonic progression is a type of sequence which is obtained by taking the reciprocals of the A.P. , example: if $a,b,c,d$ is in A.P. then $\dfrac{1}{a},\dfrac{1}{b},\dfrac{1}{c},\dfrac{1}{d}$ will be in H.P. The ${n^{th}}$ term of a H.P. is given by: $\dfrac{1}{{\left[ {a + \left( {n - 1} \right)d} \right]}}$ (reciprocal of ${n^{th}}$ term of A.P.) . Sum of $n$ terms of H.P. is given by: ${S_n} = \dfrac{1}{d}\ln \left\{ {\dfrac{{2a + \left( {2n - 1} \right)d}}{{2a - d}}} \right\}$ . $\left( 2 \right)$ Geometric progression: The ${n^{th}}$ term of a G.P. is given by ${a_r} = a{r^{n - 1}}$ . The formula for sum of $n$ terms of a G.P. is given by: ${S_n} = a\left[ {\dfrac{{\left( {{r^n} - 1} \right)}}{{\left( {r - 1} \right)}}} \right]{\text{ if }}r \ne 1$ . $\left( 3 \right)$ Arithmetic progression: The ${n^{th}}$ term of a A.P. is given by ${a_n} = a + \left( {n - 1} \right)d$ . The formula for sum of $n$ terms of a A.P. is given by ${S_n} = \dfrac{n}{2}\left[ {2a + \left( {n - 1} \right)d} \right]$ .
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

