Answer

Verified

456k+ views

Hint: Calculate the \[{{n}^{th}}\] term of the series and then observe that each term of this series is a sum of terms of AP and terms of a GP. Calculate the sum of n terms of this AP and the sum of n terms of this GP and the two sums to get the value of n terms of the given series.

Complete step-by-step answer:

We have a series \[x+a,{{x}^{2}}+2a,{{x}^{3}}+3a...\]. We have to find the sum of n terms of this series.

We observe that the \[{{n}^{th}}\] term of this series is \[na+{{x}^{n}}\].

So, we have to find the value of \[x+a+{{x}^{2}}+2a+{{x}^{3}}+3a...+na+{{x}^{n}}\].

We observe that each term of this series is written as a sum of terms of the AP \[a,2a,3a,...\] and GP \[x,{{x}^{2}},{{x}^{3}},...\], which means that the \[{{n}^{th}}\] term of the given series is written as a sum of \[{{n}^{th}}\] term of the GP and \[{{n}^{th}}\] term of the AP.

So, to find the sum of the given series, we will find the sum of n terms of AP and n terms of GP and then add the two values to get the sum of the given series.

We have the AP \[a,2a,3a,...\]. We have to find the sum of first n terms of this AP. We observe that the first term of this AP is a and the common difference is \[d=2a-a=a\].

We know that the sum of n terms of AP whose first term is ‘a’ and the common difference is ‘d’ is \[\dfrac{n}{2}\left[ 2a+\left( n-1 \right)d \right]\].

Substituting \[d=a\] in the above formula, we have \[a+2a+3a+...na=\dfrac{n}{2}\left[ 2a+\left( n-1 \right)a \right]=\dfrac{n}{2}\left[ 2a+na-a \right]=\dfrac{n}{2}\left[ a+na \right]=\dfrac{n}{2}\left( n+1 \right)a.....\left( 1 \right)\].

We will now calculate the sum of n terms of the GP \[x,{{x}^{2}},{{x}^{3}},...\]. We observe that the first term of GP is ‘x’ and the common ratio is \[r=\dfrac{{{x}^{2}}}{x}=x\].

We know that sum of n terms of GP whose first term is ‘a’ and common ratio is ‘r’ is \[\dfrac{a\left( {{r}^{n}}-1 \right)}{r-1}\].

Substituting \[a=x,r=x\] in the above formula, we have \[x+{{x}^{2}}+{{x}^{3}}+...{{x}^{n}}=\dfrac{x\left( {{x}^{n}}-1 \right)}{x-1}......\left( 2 \right)\].

We can rewrite \[x+a+{{x}^{2}}+2a+{{x}^{3}}+3a...+na+{{x}^{n}}\] as \[x+a+{{x}^{2}}+2a+{{x}^{3}}+3a...+na+{{x}^{n}}=\left( a+2a+...na \right)+\left( x+{{x}^{2}}+...+{{x}^{n}} \right)\].

Using equation (1) and (2), we have \[x+a+{{x}^{2}}+2a+{{x}^{3}}+3a...+na+{{x}^{n}}=\dfrac{n}{2}\left( n+1 \right)a+\dfrac{x\left( {{x}^{n}}-1 \right)}{x-1}\].

Hence, the sum of n terms of the given series is \[\dfrac{n}{2}\left( n+1 \right)a+\dfrac{x\left( {{x}^{n}}-1 \right)}{x-1}\].

Note: We must clearly know about any AP and GP. Arithmetic Progression (AP) is the sequence of numbers such that the difference between two consecutive terms is a constant. Geometric Progression (GP) is a sequence of numbers in which the ratio of two consecutive numbers is a constant.

Complete step-by-step answer:

We have a series \[x+a,{{x}^{2}}+2a,{{x}^{3}}+3a...\]. We have to find the sum of n terms of this series.

We observe that the \[{{n}^{th}}\] term of this series is \[na+{{x}^{n}}\].

So, we have to find the value of \[x+a+{{x}^{2}}+2a+{{x}^{3}}+3a...+na+{{x}^{n}}\].

We observe that each term of this series is written as a sum of terms of the AP \[a,2a,3a,...\] and GP \[x,{{x}^{2}},{{x}^{3}},...\], which means that the \[{{n}^{th}}\] term of the given series is written as a sum of \[{{n}^{th}}\] term of the GP and \[{{n}^{th}}\] term of the AP.

So, to find the sum of the given series, we will find the sum of n terms of AP and n terms of GP and then add the two values to get the sum of the given series.

We have the AP \[a,2a,3a,...\]. We have to find the sum of first n terms of this AP. We observe that the first term of this AP is a and the common difference is \[d=2a-a=a\].

We know that the sum of n terms of AP whose first term is ‘a’ and the common difference is ‘d’ is \[\dfrac{n}{2}\left[ 2a+\left( n-1 \right)d \right]\].

Substituting \[d=a\] in the above formula, we have \[a+2a+3a+...na=\dfrac{n}{2}\left[ 2a+\left( n-1 \right)a \right]=\dfrac{n}{2}\left[ 2a+na-a \right]=\dfrac{n}{2}\left[ a+na \right]=\dfrac{n}{2}\left( n+1 \right)a.....\left( 1 \right)\].

We will now calculate the sum of n terms of the GP \[x,{{x}^{2}},{{x}^{3}},...\]. We observe that the first term of GP is ‘x’ and the common ratio is \[r=\dfrac{{{x}^{2}}}{x}=x\].

We know that sum of n terms of GP whose first term is ‘a’ and common ratio is ‘r’ is \[\dfrac{a\left( {{r}^{n}}-1 \right)}{r-1}\].

Substituting \[a=x,r=x\] in the above formula, we have \[x+{{x}^{2}}+{{x}^{3}}+...{{x}^{n}}=\dfrac{x\left( {{x}^{n}}-1 \right)}{x-1}......\left( 2 \right)\].

We can rewrite \[x+a+{{x}^{2}}+2a+{{x}^{3}}+3a...+na+{{x}^{n}}\] as \[x+a+{{x}^{2}}+2a+{{x}^{3}}+3a...+na+{{x}^{n}}=\left( a+2a+...na \right)+\left( x+{{x}^{2}}+...+{{x}^{n}} \right)\].

Using equation (1) and (2), we have \[x+a+{{x}^{2}}+2a+{{x}^{3}}+3a...+na+{{x}^{n}}=\dfrac{n}{2}\left( n+1 \right)a+\dfrac{x\left( {{x}^{n}}-1 \right)}{x-1}\].

Hence, the sum of n terms of the given series is \[\dfrac{n}{2}\left( n+1 \right)a+\dfrac{x\left( {{x}^{n}}-1 \right)}{x-1}\].

Note: We must clearly know about any AP and GP. Arithmetic Progression (AP) is the sequence of numbers such that the difference between two consecutive terms is a constant. Geometric Progression (GP) is a sequence of numbers in which the ratio of two consecutive numbers is a constant.

Recently Updated Pages

When people say No pun intended what does that mea class 8 english CBSE

Name the states which share their boundary with Indias class 9 social science CBSE

Give an account of the Northern Plains of India class 9 social science CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

Advantages and disadvantages of science

10 examples of friction in our daily life

Trending doubts

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Which are the Top 10 Largest Countries of the World?

Give 10 examples for herbs , shrubs , climbers , creepers

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

10 examples of law on inertia in our daily life

Write a letter to the principal requesting him to grant class 10 english CBSE

Difference Between Plant Cell and Animal Cell

Change the following sentences into negative and interrogative class 10 english CBSE