
Sum of the series \[\dfrac{1}{1.2.3}+\dfrac{5}{3.4.5}+\dfrac{9}{5.6.7}+...\] is equal to
A. $ \dfrac{3}{2}-3{{\log }_{e}}2 $
B. $ \dfrac{5}{2}-3{{\log }_{e}}2 $
C. $ 1-4{{\log }_{e}}2 $
D. none of these
Answer
508.5k+ views
Hint: We first try to find the general form of the given series \[\dfrac{1}{1.2.3}+\dfrac{5}{3.4.5}+\dfrac{9}{5.6.7}+...\]. We take A.P. series in the numerator and the G.P. series in the denominator. We break the general form using the factors of the denominator. We find the diverging sequence and solve it.
Complete step-by-step answer:
We first need to find the general term of the series \[\dfrac{1}{1.2.3}+\dfrac{5}{3.4.5}+\dfrac{9}{5.6.7}+...\].
The numerator of the terms is an A.P. series and the mid terms of the denominator are G.P. series.
We find the general form of 1, 5, 9, ……. Which gives a common difference as $ 9-5=4 $ .
Therefore, the $ {{n}^{th}} $ term will be $ 1+4\left( n-1 \right)=4n-3 $ .
The mid terms of the denominators are 2, 4, 6, ……. Which gives the general form as $ 2n $ .
The other terms are $ 2n-1 $ and $ 2n+1 $ .
Therefore, general $ {{n}^{th}} $ term of the series \[\dfrac{1}{1.2.3}+\dfrac{5}{3.4.5}+\dfrac{9}{5.6.7}+...\] is \[\dfrac{4n-3}{\left( 2n-1 \right)2n\left( 2n+1 \right)}\].
We want to break the numerator with respect to denominator.
So, we get \[4n-3=2\left( 2n-1 \right)+2n-\left( 2n+1 \right)\].
So, \[\dfrac{4n-3}{\left( 2n-1 \right)2n\left( 2n+1 \right)}=\dfrac{2\left( 2n-1 \right)+2n-\left( 2n+1 \right)}{\left( 2n-1 \right)2n\left( 2n+1 \right)}=\dfrac{1}{n\left( 2n+1 \right)}+\dfrac{1}{\left( 2n-1 \right)\left( 2n+1 \right)}-\dfrac{1}{\left( 2n-1 \right)2n}\]
We again break the series.
\[\dfrac{1}{n\left( 2n+1 \right)}=\dfrac{2n+1-2n}{n\left( 2n+1 \right)}=\dfrac{1}{n}-\dfrac{2}{\left( 2n+1 \right)}\]
\[\dfrac{1}{\left( 2n-1 \right)\left( 2n+1 \right)}=\dfrac{1}{2}\times \dfrac{\left( 2n+1 \right)-\left( 2n-1 \right)}{\left( 2n-1 \right)\left( 2n+1 \right)}=\dfrac{1}{2\left( 2n-1 \right)}-\dfrac{1}{2\left( 2n+1 \right)}\]
\[-\dfrac{1}{\left( 2n-1 \right)2n}=\dfrac{\left( 2n-1 \right)-2n}{\left( 2n-1 \right)2n}=\dfrac{1}{2n}-\dfrac{1}{\left( 2n-1 \right)}\]
We get
\[\begin{align}
& \dfrac{4n-3}{\left( 2n-1 \right)2n\left( 2n+1 \right)} \\
& =\dfrac{1}{n}-\dfrac{2}{\left( 2n+1 \right)}+\dfrac{1}{2\left( 2n-1 \right)}-\dfrac{1}{2\left( 2n+1 \right)}+\dfrac{1}{2n}-\dfrac{1}{\left( 2n-1 \right)} \\
& =\dfrac{3}{2n}-\dfrac{5}{2\left( 2n+1 \right)}-\dfrac{1}{2\left( 2n-1 \right)} \\
\end{align}\]
So, \[\dfrac{1}{1.2.3}+\dfrac{5}{3.4.5}+\dfrac{9}{5.6.7}+...=\sum\limits_{n-1}^{\infty }{\dfrac{3}{2n}}-\sum\limits_{n-1}^{\infty }{\dfrac{5}{2\left( 2n+1 \right)}}-\sum\limits_{n-1}^{\infty }{\dfrac{1}{2\left( 2n-1 \right)}}\]
We know that $ {{\log }_{e}}\left( 1+x \right)=x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-....+{{\left( -1 \right)}^{n-1}}\dfrac{{{x}^{n}}}{n}+....\infty $ .
We also have
\[\begin{align}
& \sum\limits_{n-1}^{\infty }{\dfrac{3}{2n}}=\dfrac{3}{2}\left[ 1+\dfrac{1}{2}+\dfrac{1}{3}+....\infty \right] \\
& \sum\limits_{n-1}^{\infty }{\dfrac{5}{2\left( 2n+1 \right)}}=\dfrac{5}{2}\left[ \dfrac{1}{3}+\dfrac{1}{5}+\dfrac{1}{7}+....\infty \right] \\
& \sum\limits_{n-1}^{\infty }{\dfrac{1}{2\left( 2n-1 \right)}}=\dfrac{1}{2}\left[ 1+\dfrac{1}{3}+\dfrac{1}{5}+....\infty \right] \\
\end{align}\]
The sum form of \[1+\dfrac{1}{2}+\dfrac{1}{3}+....\infty \] is not a converging series. So, \[1+\dfrac{1}{2}+\dfrac{1}{3}+....\infty \to \infty \].
\[\dfrac{1}{1.2.3}+\dfrac{5}{3.4.5}+\dfrac{9}{5.6.7}+...=\sum\limits_{n-1}^{\infty }{\dfrac{3}{2n}}-\sum\limits_{n-1}^{\infty }{\dfrac{5}{2\left( 2n+1 \right)}}-\sum\limits_{n-1}^{\infty }{\dfrac{1}{2\left( 2n-1 \right)}}\to \infty \].
The correct option is D.
So, the correct answer is “Option D”.
Note: The series becomes diverging as the $ {{\log }_{e}}\left( 1+x \right)=x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-....+{{\left( -1 \right)}^{n-1}}\dfrac{{{x}^{n}}}{n}+....\infty $ formula changes to $ {{\log }_{e}}\left( 1-x \right)=-\left[ x+\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}+....+\dfrac{{{x}^{n}}}{n}+....\infty \right] $ . The value we are putting is 1 in place of $ x $ . Therefore, we can’t have the value of $ {{\log }_{e}}0 $ .
Complete step-by-step answer:
We first need to find the general term of the series \[\dfrac{1}{1.2.3}+\dfrac{5}{3.4.5}+\dfrac{9}{5.6.7}+...\].
The numerator of the terms is an A.P. series and the mid terms of the denominator are G.P. series.
We find the general form of 1, 5, 9, ……. Which gives a common difference as $ 9-5=4 $ .
Therefore, the $ {{n}^{th}} $ term will be $ 1+4\left( n-1 \right)=4n-3 $ .
The mid terms of the denominators are 2, 4, 6, ……. Which gives the general form as $ 2n $ .
The other terms are $ 2n-1 $ and $ 2n+1 $ .
Therefore, general $ {{n}^{th}} $ term of the series \[\dfrac{1}{1.2.3}+\dfrac{5}{3.4.5}+\dfrac{9}{5.6.7}+...\] is \[\dfrac{4n-3}{\left( 2n-1 \right)2n\left( 2n+1 \right)}\].
We want to break the numerator with respect to denominator.
So, we get \[4n-3=2\left( 2n-1 \right)+2n-\left( 2n+1 \right)\].
So, \[\dfrac{4n-3}{\left( 2n-1 \right)2n\left( 2n+1 \right)}=\dfrac{2\left( 2n-1 \right)+2n-\left( 2n+1 \right)}{\left( 2n-1 \right)2n\left( 2n+1 \right)}=\dfrac{1}{n\left( 2n+1 \right)}+\dfrac{1}{\left( 2n-1 \right)\left( 2n+1 \right)}-\dfrac{1}{\left( 2n-1 \right)2n}\]
We again break the series.
\[\dfrac{1}{n\left( 2n+1 \right)}=\dfrac{2n+1-2n}{n\left( 2n+1 \right)}=\dfrac{1}{n}-\dfrac{2}{\left( 2n+1 \right)}\]
\[\dfrac{1}{\left( 2n-1 \right)\left( 2n+1 \right)}=\dfrac{1}{2}\times \dfrac{\left( 2n+1 \right)-\left( 2n-1 \right)}{\left( 2n-1 \right)\left( 2n+1 \right)}=\dfrac{1}{2\left( 2n-1 \right)}-\dfrac{1}{2\left( 2n+1 \right)}\]
\[-\dfrac{1}{\left( 2n-1 \right)2n}=\dfrac{\left( 2n-1 \right)-2n}{\left( 2n-1 \right)2n}=\dfrac{1}{2n}-\dfrac{1}{\left( 2n-1 \right)}\]
We get
\[\begin{align}
& \dfrac{4n-3}{\left( 2n-1 \right)2n\left( 2n+1 \right)} \\
& =\dfrac{1}{n}-\dfrac{2}{\left( 2n+1 \right)}+\dfrac{1}{2\left( 2n-1 \right)}-\dfrac{1}{2\left( 2n+1 \right)}+\dfrac{1}{2n}-\dfrac{1}{\left( 2n-1 \right)} \\
& =\dfrac{3}{2n}-\dfrac{5}{2\left( 2n+1 \right)}-\dfrac{1}{2\left( 2n-1 \right)} \\
\end{align}\]
So, \[\dfrac{1}{1.2.3}+\dfrac{5}{3.4.5}+\dfrac{9}{5.6.7}+...=\sum\limits_{n-1}^{\infty }{\dfrac{3}{2n}}-\sum\limits_{n-1}^{\infty }{\dfrac{5}{2\left( 2n+1 \right)}}-\sum\limits_{n-1}^{\infty }{\dfrac{1}{2\left( 2n-1 \right)}}\]
We know that $ {{\log }_{e}}\left( 1+x \right)=x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-....+{{\left( -1 \right)}^{n-1}}\dfrac{{{x}^{n}}}{n}+....\infty $ .
We also have
\[\begin{align}
& \sum\limits_{n-1}^{\infty }{\dfrac{3}{2n}}=\dfrac{3}{2}\left[ 1+\dfrac{1}{2}+\dfrac{1}{3}+....\infty \right] \\
& \sum\limits_{n-1}^{\infty }{\dfrac{5}{2\left( 2n+1 \right)}}=\dfrac{5}{2}\left[ \dfrac{1}{3}+\dfrac{1}{5}+\dfrac{1}{7}+....\infty \right] \\
& \sum\limits_{n-1}^{\infty }{\dfrac{1}{2\left( 2n-1 \right)}}=\dfrac{1}{2}\left[ 1+\dfrac{1}{3}+\dfrac{1}{5}+....\infty \right] \\
\end{align}\]
The sum form of \[1+\dfrac{1}{2}+\dfrac{1}{3}+....\infty \] is not a converging series. So, \[1+\dfrac{1}{2}+\dfrac{1}{3}+....\infty \to \infty \].
\[\dfrac{1}{1.2.3}+\dfrac{5}{3.4.5}+\dfrac{9}{5.6.7}+...=\sum\limits_{n-1}^{\infty }{\dfrac{3}{2n}}-\sum\limits_{n-1}^{\infty }{\dfrac{5}{2\left( 2n+1 \right)}}-\sum\limits_{n-1}^{\infty }{\dfrac{1}{2\left( 2n-1 \right)}}\to \infty \].
The correct option is D.
So, the correct answer is “Option D”.
Note: The series becomes diverging as the $ {{\log }_{e}}\left( 1+x \right)=x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-....+{{\left( -1 \right)}^{n-1}}\dfrac{{{x}^{n}}}{n}+....\infty $ formula changes to $ {{\log }_{e}}\left( 1-x \right)=-\left[ x+\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}+....+\dfrac{{{x}^{n}}}{n}+....\infty \right] $ . The value we are putting is 1 in place of $ x $ . Therefore, we can’t have the value of $ {{\log }_{e}}0 $ .
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

