
Sum of the series \[\dfrac{1}{1.2.3}+\dfrac{5}{3.4.5}+\dfrac{9}{5.6.7}+...\] is equal to
A. $ \dfrac{3}{2}-3{{\log }_{e}}2 $
B. $ \dfrac{5}{2}-3{{\log }_{e}}2 $
C. $ 1-4{{\log }_{e}}2 $
D. none of these
Answer
494.4k+ views
Hint: We first try to find the general form of the given series \[\dfrac{1}{1.2.3}+\dfrac{5}{3.4.5}+\dfrac{9}{5.6.7}+...\]. We take A.P. series in the numerator and the G.P. series in the denominator. We break the general form using the factors of the denominator. We find the diverging sequence and solve it.
Complete step-by-step answer:
We first need to find the general term of the series \[\dfrac{1}{1.2.3}+\dfrac{5}{3.4.5}+\dfrac{9}{5.6.7}+...\].
The numerator of the terms is an A.P. series and the mid terms of the denominator are G.P. series.
We find the general form of 1, 5, 9, ……. Which gives a common difference as $ 9-5=4 $ .
Therefore, the $ {{n}^{th}} $ term will be $ 1+4\left( n-1 \right)=4n-3 $ .
The mid terms of the denominators are 2, 4, 6, ……. Which gives the general form as $ 2n $ .
The other terms are $ 2n-1 $ and $ 2n+1 $ .
Therefore, general $ {{n}^{th}} $ term of the series \[\dfrac{1}{1.2.3}+\dfrac{5}{3.4.5}+\dfrac{9}{5.6.7}+...\] is \[\dfrac{4n-3}{\left( 2n-1 \right)2n\left( 2n+1 \right)}\].
We want to break the numerator with respect to denominator.
So, we get \[4n-3=2\left( 2n-1 \right)+2n-\left( 2n+1 \right)\].
So, \[\dfrac{4n-3}{\left( 2n-1 \right)2n\left( 2n+1 \right)}=\dfrac{2\left( 2n-1 \right)+2n-\left( 2n+1 \right)}{\left( 2n-1 \right)2n\left( 2n+1 \right)}=\dfrac{1}{n\left( 2n+1 \right)}+\dfrac{1}{\left( 2n-1 \right)\left( 2n+1 \right)}-\dfrac{1}{\left( 2n-1 \right)2n}\]
We again break the series.
\[\dfrac{1}{n\left( 2n+1 \right)}=\dfrac{2n+1-2n}{n\left( 2n+1 \right)}=\dfrac{1}{n}-\dfrac{2}{\left( 2n+1 \right)}\]
\[\dfrac{1}{\left( 2n-1 \right)\left( 2n+1 \right)}=\dfrac{1}{2}\times \dfrac{\left( 2n+1 \right)-\left( 2n-1 \right)}{\left( 2n-1 \right)\left( 2n+1 \right)}=\dfrac{1}{2\left( 2n-1 \right)}-\dfrac{1}{2\left( 2n+1 \right)}\]
\[-\dfrac{1}{\left( 2n-1 \right)2n}=\dfrac{\left( 2n-1 \right)-2n}{\left( 2n-1 \right)2n}=\dfrac{1}{2n}-\dfrac{1}{\left( 2n-1 \right)}\]
We get
\[\begin{align}
& \dfrac{4n-3}{\left( 2n-1 \right)2n\left( 2n+1 \right)} \\
& =\dfrac{1}{n}-\dfrac{2}{\left( 2n+1 \right)}+\dfrac{1}{2\left( 2n-1 \right)}-\dfrac{1}{2\left( 2n+1 \right)}+\dfrac{1}{2n}-\dfrac{1}{\left( 2n-1 \right)} \\
& =\dfrac{3}{2n}-\dfrac{5}{2\left( 2n+1 \right)}-\dfrac{1}{2\left( 2n-1 \right)} \\
\end{align}\]
So, \[\dfrac{1}{1.2.3}+\dfrac{5}{3.4.5}+\dfrac{9}{5.6.7}+...=\sum\limits_{n-1}^{\infty }{\dfrac{3}{2n}}-\sum\limits_{n-1}^{\infty }{\dfrac{5}{2\left( 2n+1 \right)}}-\sum\limits_{n-1}^{\infty }{\dfrac{1}{2\left( 2n-1 \right)}}\]
We know that $ {{\log }_{e}}\left( 1+x \right)=x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-....+{{\left( -1 \right)}^{n-1}}\dfrac{{{x}^{n}}}{n}+....\infty $ .
We also have
\[\begin{align}
& \sum\limits_{n-1}^{\infty }{\dfrac{3}{2n}}=\dfrac{3}{2}\left[ 1+\dfrac{1}{2}+\dfrac{1}{3}+....\infty \right] \\
& \sum\limits_{n-1}^{\infty }{\dfrac{5}{2\left( 2n+1 \right)}}=\dfrac{5}{2}\left[ \dfrac{1}{3}+\dfrac{1}{5}+\dfrac{1}{7}+....\infty \right] \\
& \sum\limits_{n-1}^{\infty }{\dfrac{1}{2\left( 2n-1 \right)}}=\dfrac{1}{2}\left[ 1+\dfrac{1}{3}+\dfrac{1}{5}+....\infty \right] \\
\end{align}\]
The sum form of \[1+\dfrac{1}{2}+\dfrac{1}{3}+....\infty \] is not a converging series. So, \[1+\dfrac{1}{2}+\dfrac{1}{3}+....\infty \to \infty \].
\[\dfrac{1}{1.2.3}+\dfrac{5}{3.4.5}+\dfrac{9}{5.6.7}+...=\sum\limits_{n-1}^{\infty }{\dfrac{3}{2n}}-\sum\limits_{n-1}^{\infty }{\dfrac{5}{2\left( 2n+1 \right)}}-\sum\limits_{n-1}^{\infty }{\dfrac{1}{2\left( 2n-1 \right)}}\to \infty \].
The correct option is D.
So, the correct answer is “Option D”.
Note: The series becomes diverging as the $ {{\log }_{e}}\left( 1+x \right)=x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-....+{{\left( -1 \right)}^{n-1}}\dfrac{{{x}^{n}}}{n}+....\infty $ formula changes to $ {{\log }_{e}}\left( 1-x \right)=-\left[ x+\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}+....+\dfrac{{{x}^{n}}}{n}+....\infty \right] $ . The value we are putting is 1 in place of $ x $ . Therefore, we can’t have the value of $ {{\log }_{e}}0 $ .
Complete step-by-step answer:
We first need to find the general term of the series \[\dfrac{1}{1.2.3}+\dfrac{5}{3.4.5}+\dfrac{9}{5.6.7}+...\].
The numerator of the terms is an A.P. series and the mid terms of the denominator are G.P. series.
We find the general form of 1, 5, 9, ……. Which gives a common difference as $ 9-5=4 $ .
Therefore, the $ {{n}^{th}} $ term will be $ 1+4\left( n-1 \right)=4n-3 $ .
The mid terms of the denominators are 2, 4, 6, ……. Which gives the general form as $ 2n $ .
The other terms are $ 2n-1 $ and $ 2n+1 $ .
Therefore, general $ {{n}^{th}} $ term of the series \[\dfrac{1}{1.2.3}+\dfrac{5}{3.4.5}+\dfrac{9}{5.6.7}+...\] is \[\dfrac{4n-3}{\left( 2n-1 \right)2n\left( 2n+1 \right)}\].
We want to break the numerator with respect to denominator.
So, we get \[4n-3=2\left( 2n-1 \right)+2n-\left( 2n+1 \right)\].
So, \[\dfrac{4n-3}{\left( 2n-1 \right)2n\left( 2n+1 \right)}=\dfrac{2\left( 2n-1 \right)+2n-\left( 2n+1 \right)}{\left( 2n-1 \right)2n\left( 2n+1 \right)}=\dfrac{1}{n\left( 2n+1 \right)}+\dfrac{1}{\left( 2n-1 \right)\left( 2n+1 \right)}-\dfrac{1}{\left( 2n-1 \right)2n}\]
We again break the series.
\[\dfrac{1}{n\left( 2n+1 \right)}=\dfrac{2n+1-2n}{n\left( 2n+1 \right)}=\dfrac{1}{n}-\dfrac{2}{\left( 2n+1 \right)}\]
\[\dfrac{1}{\left( 2n-1 \right)\left( 2n+1 \right)}=\dfrac{1}{2}\times \dfrac{\left( 2n+1 \right)-\left( 2n-1 \right)}{\left( 2n-1 \right)\left( 2n+1 \right)}=\dfrac{1}{2\left( 2n-1 \right)}-\dfrac{1}{2\left( 2n+1 \right)}\]
\[-\dfrac{1}{\left( 2n-1 \right)2n}=\dfrac{\left( 2n-1 \right)-2n}{\left( 2n-1 \right)2n}=\dfrac{1}{2n}-\dfrac{1}{\left( 2n-1 \right)}\]
We get
\[\begin{align}
& \dfrac{4n-3}{\left( 2n-1 \right)2n\left( 2n+1 \right)} \\
& =\dfrac{1}{n}-\dfrac{2}{\left( 2n+1 \right)}+\dfrac{1}{2\left( 2n-1 \right)}-\dfrac{1}{2\left( 2n+1 \right)}+\dfrac{1}{2n}-\dfrac{1}{\left( 2n-1 \right)} \\
& =\dfrac{3}{2n}-\dfrac{5}{2\left( 2n+1 \right)}-\dfrac{1}{2\left( 2n-1 \right)} \\
\end{align}\]
So, \[\dfrac{1}{1.2.3}+\dfrac{5}{3.4.5}+\dfrac{9}{5.6.7}+...=\sum\limits_{n-1}^{\infty }{\dfrac{3}{2n}}-\sum\limits_{n-1}^{\infty }{\dfrac{5}{2\left( 2n+1 \right)}}-\sum\limits_{n-1}^{\infty }{\dfrac{1}{2\left( 2n-1 \right)}}\]
We know that $ {{\log }_{e}}\left( 1+x \right)=x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-....+{{\left( -1 \right)}^{n-1}}\dfrac{{{x}^{n}}}{n}+....\infty $ .
We also have
\[\begin{align}
& \sum\limits_{n-1}^{\infty }{\dfrac{3}{2n}}=\dfrac{3}{2}\left[ 1+\dfrac{1}{2}+\dfrac{1}{3}+....\infty \right] \\
& \sum\limits_{n-1}^{\infty }{\dfrac{5}{2\left( 2n+1 \right)}}=\dfrac{5}{2}\left[ \dfrac{1}{3}+\dfrac{1}{5}+\dfrac{1}{7}+....\infty \right] \\
& \sum\limits_{n-1}^{\infty }{\dfrac{1}{2\left( 2n-1 \right)}}=\dfrac{1}{2}\left[ 1+\dfrac{1}{3}+\dfrac{1}{5}+....\infty \right] \\
\end{align}\]
The sum form of \[1+\dfrac{1}{2}+\dfrac{1}{3}+....\infty \] is not a converging series. So, \[1+\dfrac{1}{2}+\dfrac{1}{3}+....\infty \to \infty \].
\[\dfrac{1}{1.2.3}+\dfrac{5}{3.4.5}+\dfrac{9}{5.6.7}+...=\sum\limits_{n-1}^{\infty }{\dfrac{3}{2n}}-\sum\limits_{n-1}^{\infty }{\dfrac{5}{2\left( 2n+1 \right)}}-\sum\limits_{n-1}^{\infty }{\dfrac{1}{2\left( 2n-1 \right)}}\to \infty \].
The correct option is D.
So, the correct answer is “Option D”.
Note: The series becomes diverging as the $ {{\log }_{e}}\left( 1+x \right)=x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-....+{{\left( -1 \right)}^{n-1}}\dfrac{{{x}^{n}}}{n}+....\infty $ formula changes to $ {{\log }_{e}}\left( 1-x \right)=-\left[ x+\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}+....+\dfrac{{{x}^{n}}}{n}+....\infty \right] $ . The value we are putting is 1 in place of $ x $ . Therefore, we can’t have the value of $ {{\log }_{e}}0 $ .
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

