
Sum of the last 12 coefficients in the binomial expansion of \[{\left( {1 + x} \right)^{23}}\] is:
Answer
589.2k+ views
Hint: Here we will first write the binomial expansion of \[{\left( {1 + x} \right)^{23}}\] and then we will put x=1 and then solve it further to get the desired answer.
The general binomial expansion of \[{\left( {a + b} \right)^n}\]is given by:-
\[{\left( {a + b} \right)^n}{ = ^n}{C_0}{\left( a \right)^n}{\left( b \right)^0}{ + ^n}{C_1}{\left( a \right)^{n - 1}}{\left( b \right)^1}{ + ^n}{C_2}{\left( a \right)^{n - 2}}{\left( b \right)^2} + .............{ + ^n}{C_n}{\left( a \right)^0}{\left( b \right)^n}\]
Complete step-by-step answer:
Here we are given:-
\[{\left( {1 + x} \right)^{23}}\]
Now we know that the general binomial expansion of \[{\left( {a + b} \right)^n}\]is given by:-
\[{\left( {a + b} \right)^n}{ = ^n}{C_0}{\left( a \right)^n}{\left( b \right)^0}{ + ^n}{C_1}{\left( a \right)^{n - 1}}{\left( b \right)^1}{ + ^n}{C_2}{\left( a \right)^{n - 2}}{\left( b \right)^2} + .............{ + ^n}{C_n}{\left( a \right)^0}{\left( b \right)^n}\]
Hence the binomial expansion of \[{\left( {1 + x} \right)^{23}}\]is given by:-
\[{\left( {1 + x} \right)^{23}}{ = ^{23}}{C_0}{\left( 1 \right)^{23}}{\left( x \right)^0}{ + ^{23}}{C_1}{\left( 1 \right)^{23 - 1}}{\left( x \right)^1}{ + ^{23}}{C_2}{\left( 1 \right)^{23 - 2}}{\left( x \right)^2} + .............{ + ^{23}}{C_{23}}{\left( 1 \right)^0}{\left( x \right)^{23}}\]
Solving it further we get:-
\[{\left( {1 + x} \right)^{23}}{ = ^{23}}{C_0}{ + ^{23}}{C_1}{\left( x \right)^1}{ + ^{23}}{C_2}{\left( x \right)^2} + .............{ + ^{23}}{C_{23}}{\left( x \right)^{23}}\]
Now putting \[x = 1\] we get:-
\[{\left( {1 + 1} \right)^{23}}{ = ^{23}}{C_0}{ + ^{23}}{C_1}{\left( 1 \right)^1}{ + ^{23}}{C_2}{\left( 1 \right)^2} + .............{ + ^{23}}{C_{23}}{\left( 1 \right)^{23}}\]
Solving it further we get:-
\[{2^{23}}{ = ^{23}}{C_0}{ + ^{23}}{C_1}{ + ^{23}}{C_2} + .....................{ + ^{23}}{C_{23}}\]
Now we know that:-
\[^{23}{C_0}{ = ^{23}}{C_{23}}\]
\[^{23}{C_1}{ = ^{23}}{C_{22}}\]
\[^{23}{C_2}{ = ^{23}}{C_{21}}\]
.
.
.
.
\[^{23}{C_{11}}{ = ^{23}}{C_{12}}\]
Hence, substituting these values we get:-
\[{2^{23}} = 2\left[ {^{23}{C_{12}} + ............{ + ^{23}}{C_{21}}{ + ^{23}}{C_{22}}{ + ^{23}}{C_{23}}} \right]\]
Dividing the equation by 2 we get:-
\[\dfrac{{{2^{23}}}}{2}{ = ^{23}}{C_{12}} + ............{ + ^{23}}{C_{21}}{ + ^{23}}{C_{22}}{ + ^{23}}{C_{23}}\]
\[ \Rightarrow {2^{22}}{ = ^{23}}{C_{12}} + ............{ + ^{23}}{C_{21}}{ + ^{23}}{C_{22}}{ + ^{23}}{C_{23}}\]
Now since \[^{23}{C_{12}} + ............{ + ^{23}}{C_{21}}{ + ^{23}}{C_{22}}{ + ^{23}}{C_{23}}\] is the sum f the coefficients of last 12 terms of the binomial expansion.
Hence, the sum is equal to \[{2^{22}}\].
Note: Students should note that the main trick to solve this question is to put \[x = 1\] in the expansion of \[{\left( {1 + x} \right)^{23}}\] to get the desired answer otherwise it will be difficult to solve the given question.
The general binomial expansion of \[{\left( {a + b} \right)^n}\]is given by:-
\[{\left( {a + b} \right)^n}{ = ^n}{C_0}{\left( a \right)^n}{\left( b \right)^0}{ + ^n}{C_1}{\left( a \right)^{n - 1}}{\left( b \right)^1}{ + ^n}{C_2}{\left( a \right)^{n - 2}}{\left( b \right)^2} + .............{ + ^n}{C_n}{\left( a \right)^0}{\left( b \right)^n}\]
Complete step-by-step answer:
Here we are given:-
\[{\left( {1 + x} \right)^{23}}\]
Now we know that the general binomial expansion of \[{\left( {a + b} \right)^n}\]is given by:-
\[{\left( {a + b} \right)^n}{ = ^n}{C_0}{\left( a \right)^n}{\left( b \right)^0}{ + ^n}{C_1}{\left( a \right)^{n - 1}}{\left( b \right)^1}{ + ^n}{C_2}{\left( a \right)^{n - 2}}{\left( b \right)^2} + .............{ + ^n}{C_n}{\left( a \right)^0}{\left( b \right)^n}\]
Hence the binomial expansion of \[{\left( {1 + x} \right)^{23}}\]is given by:-
\[{\left( {1 + x} \right)^{23}}{ = ^{23}}{C_0}{\left( 1 \right)^{23}}{\left( x \right)^0}{ + ^{23}}{C_1}{\left( 1 \right)^{23 - 1}}{\left( x \right)^1}{ + ^{23}}{C_2}{\left( 1 \right)^{23 - 2}}{\left( x \right)^2} + .............{ + ^{23}}{C_{23}}{\left( 1 \right)^0}{\left( x \right)^{23}}\]
Solving it further we get:-
\[{\left( {1 + x} \right)^{23}}{ = ^{23}}{C_0}{ + ^{23}}{C_1}{\left( x \right)^1}{ + ^{23}}{C_2}{\left( x \right)^2} + .............{ + ^{23}}{C_{23}}{\left( x \right)^{23}}\]
Now putting \[x = 1\] we get:-
\[{\left( {1 + 1} \right)^{23}}{ = ^{23}}{C_0}{ + ^{23}}{C_1}{\left( 1 \right)^1}{ + ^{23}}{C_2}{\left( 1 \right)^2} + .............{ + ^{23}}{C_{23}}{\left( 1 \right)^{23}}\]
Solving it further we get:-
\[{2^{23}}{ = ^{23}}{C_0}{ + ^{23}}{C_1}{ + ^{23}}{C_2} + .....................{ + ^{23}}{C_{23}}\]
Now we know that:-
\[^{23}{C_0}{ = ^{23}}{C_{23}}\]
\[^{23}{C_1}{ = ^{23}}{C_{22}}\]
\[^{23}{C_2}{ = ^{23}}{C_{21}}\]
.
.
.
.
\[^{23}{C_{11}}{ = ^{23}}{C_{12}}\]
Hence, substituting these values we get:-
\[{2^{23}} = 2\left[ {^{23}{C_{12}} + ............{ + ^{23}}{C_{21}}{ + ^{23}}{C_{22}}{ + ^{23}}{C_{23}}} \right]\]
Dividing the equation by 2 we get:-
\[\dfrac{{{2^{23}}}}{2}{ = ^{23}}{C_{12}} + ............{ + ^{23}}{C_{21}}{ + ^{23}}{C_{22}}{ + ^{23}}{C_{23}}\]
\[ \Rightarrow {2^{22}}{ = ^{23}}{C_{12}} + ............{ + ^{23}}{C_{21}}{ + ^{23}}{C_{22}}{ + ^{23}}{C_{23}}\]
Now since \[^{23}{C_{12}} + ............{ + ^{23}}{C_{21}}{ + ^{23}}{C_{22}}{ + ^{23}}{C_{23}}\] is the sum f the coefficients of last 12 terms of the binomial expansion.
Hence, the sum is equal to \[{2^{22}}\].
Note: Students should note that the main trick to solve this question is to put \[x = 1\] in the expansion of \[{\left( {1 + x} \right)^{23}}\] to get the desired answer otherwise it will be difficult to solve the given question.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

India is a sovereign socialist secular democratic republic class 12 social science CBSE

How many states of matter are there in total class 12 chemistry CBSE

