
Sum of the last 12 coefficients in the binomial expansion of \[{\left( {1 + x} \right)^{23}}\] is:
Answer
511.2k+ views
Hint: Here we will first write the binomial expansion of \[{\left( {1 + x} \right)^{23}}\] and then we will put x=1 and then solve it further to get the desired answer.
The general binomial expansion of \[{\left( {a + b} \right)^n}\]is given by:-
\[{\left( {a + b} \right)^n}{ = ^n}{C_0}{\left( a \right)^n}{\left( b \right)^0}{ + ^n}{C_1}{\left( a \right)^{n - 1}}{\left( b \right)^1}{ + ^n}{C_2}{\left( a \right)^{n - 2}}{\left( b \right)^2} + .............{ + ^n}{C_n}{\left( a \right)^0}{\left( b \right)^n}\]
Complete step-by-step answer:
Here we are given:-
\[{\left( {1 + x} \right)^{23}}\]
Now we know that the general binomial expansion of \[{\left( {a + b} \right)^n}\]is given by:-
\[{\left( {a + b} \right)^n}{ = ^n}{C_0}{\left( a \right)^n}{\left( b \right)^0}{ + ^n}{C_1}{\left( a \right)^{n - 1}}{\left( b \right)^1}{ + ^n}{C_2}{\left( a \right)^{n - 2}}{\left( b \right)^2} + .............{ + ^n}{C_n}{\left( a \right)^0}{\left( b \right)^n}\]
Hence the binomial expansion of \[{\left( {1 + x} \right)^{23}}\]is given by:-
\[{\left( {1 + x} \right)^{23}}{ = ^{23}}{C_0}{\left( 1 \right)^{23}}{\left( x \right)^0}{ + ^{23}}{C_1}{\left( 1 \right)^{23 - 1}}{\left( x \right)^1}{ + ^{23}}{C_2}{\left( 1 \right)^{23 - 2}}{\left( x \right)^2} + .............{ + ^{23}}{C_{23}}{\left( 1 \right)^0}{\left( x \right)^{23}}\]
Solving it further we get:-
\[{\left( {1 + x} \right)^{23}}{ = ^{23}}{C_0}{ + ^{23}}{C_1}{\left( x \right)^1}{ + ^{23}}{C_2}{\left( x \right)^2} + .............{ + ^{23}}{C_{23}}{\left( x \right)^{23}}\]
Now putting \[x = 1\] we get:-
\[{\left( {1 + 1} \right)^{23}}{ = ^{23}}{C_0}{ + ^{23}}{C_1}{\left( 1 \right)^1}{ + ^{23}}{C_2}{\left( 1 \right)^2} + .............{ + ^{23}}{C_{23}}{\left( 1 \right)^{23}}\]
Solving it further we get:-
\[{2^{23}}{ = ^{23}}{C_0}{ + ^{23}}{C_1}{ + ^{23}}{C_2} + .....................{ + ^{23}}{C_{23}}\]
Now we know that:-
\[^{23}{C_0}{ = ^{23}}{C_{23}}\]
\[^{23}{C_1}{ = ^{23}}{C_{22}}\]
\[^{23}{C_2}{ = ^{23}}{C_{21}}\]
.
.
.
.
\[^{23}{C_{11}}{ = ^{23}}{C_{12}}\]
Hence, substituting these values we get:-
\[{2^{23}} = 2\left[ {^{23}{C_{12}} + ............{ + ^{23}}{C_{21}}{ + ^{23}}{C_{22}}{ + ^{23}}{C_{23}}} \right]\]
Dividing the equation by 2 we get:-
\[\dfrac{{{2^{23}}}}{2}{ = ^{23}}{C_{12}} + ............{ + ^{23}}{C_{21}}{ + ^{23}}{C_{22}}{ + ^{23}}{C_{23}}\]
\[ \Rightarrow {2^{22}}{ = ^{23}}{C_{12}} + ............{ + ^{23}}{C_{21}}{ + ^{23}}{C_{22}}{ + ^{23}}{C_{23}}\]
Now since \[^{23}{C_{12}} + ............{ + ^{23}}{C_{21}}{ + ^{23}}{C_{22}}{ + ^{23}}{C_{23}}\] is the sum f the coefficients of last 12 terms of the binomial expansion.
Hence, the sum is equal to \[{2^{22}}\].
Note: Students should note that the main trick to solve this question is to put \[x = 1\] in the expansion of \[{\left( {1 + x} \right)^{23}}\] to get the desired answer otherwise it will be difficult to solve the given question.
The general binomial expansion of \[{\left( {a + b} \right)^n}\]is given by:-
\[{\left( {a + b} \right)^n}{ = ^n}{C_0}{\left( a \right)^n}{\left( b \right)^0}{ + ^n}{C_1}{\left( a \right)^{n - 1}}{\left( b \right)^1}{ + ^n}{C_2}{\left( a \right)^{n - 2}}{\left( b \right)^2} + .............{ + ^n}{C_n}{\left( a \right)^0}{\left( b \right)^n}\]
Complete step-by-step answer:
Here we are given:-
\[{\left( {1 + x} \right)^{23}}\]
Now we know that the general binomial expansion of \[{\left( {a + b} \right)^n}\]is given by:-
\[{\left( {a + b} \right)^n}{ = ^n}{C_0}{\left( a \right)^n}{\left( b \right)^0}{ + ^n}{C_1}{\left( a \right)^{n - 1}}{\left( b \right)^1}{ + ^n}{C_2}{\left( a \right)^{n - 2}}{\left( b \right)^2} + .............{ + ^n}{C_n}{\left( a \right)^0}{\left( b \right)^n}\]
Hence the binomial expansion of \[{\left( {1 + x} \right)^{23}}\]is given by:-
\[{\left( {1 + x} \right)^{23}}{ = ^{23}}{C_0}{\left( 1 \right)^{23}}{\left( x \right)^0}{ + ^{23}}{C_1}{\left( 1 \right)^{23 - 1}}{\left( x \right)^1}{ + ^{23}}{C_2}{\left( 1 \right)^{23 - 2}}{\left( x \right)^2} + .............{ + ^{23}}{C_{23}}{\left( 1 \right)^0}{\left( x \right)^{23}}\]
Solving it further we get:-
\[{\left( {1 + x} \right)^{23}}{ = ^{23}}{C_0}{ + ^{23}}{C_1}{\left( x \right)^1}{ + ^{23}}{C_2}{\left( x \right)^2} + .............{ + ^{23}}{C_{23}}{\left( x \right)^{23}}\]
Now putting \[x = 1\] we get:-
\[{\left( {1 + 1} \right)^{23}}{ = ^{23}}{C_0}{ + ^{23}}{C_1}{\left( 1 \right)^1}{ + ^{23}}{C_2}{\left( 1 \right)^2} + .............{ + ^{23}}{C_{23}}{\left( 1 \right)^{23}}\]
Solving it further we get:-
\[{2^{23}}{ = ^{23}}{C_0}{ + ^{23}}{C_1}{ + ^{23}}{C_2} + .....................{ + ^{23}}{C_{23}}\]
Now we know that:-
\[^{23}{C_0}{ = ^{23}}{C_{23}}\]
\[^{23}{C_1}{ = ^{23}}{C_{22}}\]
\[^{23}{C_2}{ = ^{23}}{C_{21}}\]
.
.
.
.
\[^{23}{C_{11}}{ = ^{23}}{C_{12}}\]
Hence, substituting these values we get:-
\[{2^{23}} = 2\left[ {^{23}{C_{12}} + ............{ + ^{23}}{C_{21}}{ + ^{23}}{C_{22}}{ + ^{23}}{C_{23}}} \right]\]
Dividing the equation by 2 we get:-
\[\dfrac{{{2^{23}}}}{2}{ = ^{23}}{C_{12}} + ............{ + ^{23}}{C_{21}}{ + ^{23}}{C_{22}}{ + ^{23}}{C_{23}}\]
\[ \Rightarrow {2^{22}}{ = ^{23}}{C_{12}} + ............{ + ^{23}}{C_{21}}{ + ^{23}}{C_{22}}{ + ^{23}}{C_{23}}\]
Now since \[^{23}{C_{12}} + ............{ + ^{23}}{C_{21}}{ + ^{23}}{C_{22}}{ + ^{23}}{C_{23}}\] is the sum f the coefficients of last 12 terms of the binomial expansion.
Hence, the sum is equal to \[{2^{22}}\].
Note: Students should note that the main trick to solve this question is to put \[x = 1\] in the expansion of \[{\left( {1 + x} \right)^{23}}\] to get the desired answer otherwise it will be difficult to solve the given question.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
Which one of the following is a true fish A Jellyfish class 12 biology CBSE

Which are the Top 10 Largest Countries of the World?

Why is insulin not administered orally to a diabetic class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
