
Sum of the following series up to n terms is
1.2.3.4 + 2.3.4.5+ 3.4.5.6 +.................
Answer
589.5k+ views
Hint: In this particular question first find out the $ {k^{th}} $ term of the given series, then apply summation in the $ {k^{th}} $ term from 1 to n, then apply direct general formula of the summation such as, $ \sum\limits_{k = 1}^n k = \dfrac{{n\left( {n + 1} \right)}}{2},\sum\limits_{k = 1}^n {{k^2}} = \dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6} $ and so on, so use these concepts to reach the solution of the question.
Complete step-by-step answer:
Given series is,
1.2.3.4 + 2.3.4.5+ 3.4.5.6 +.................
We have to find out the sum of this series.
So first find out the general term of this series, i.e. $ {k^{th}} $ term.
So when we observe carefully the $ {k^{th}} $ term is given as, k (K + 1) (k + 2) (k + 3)
Now apply summation so the sum of the given series is written as,
$ \Rightarrow {S_n} = \sum\limits_{k = 1}^n {k\left( {k + 1} \right)\left( {k + 2} \right)\left( {k + 3} \right)} $
Now simplify this we have,
$ \Rightarrow {S_n} = \sum\limits_{k = 1}^n {\left( {{k^2} + k} \right)\left( {{k^2} + 5k + 6} \right)} $
$ \Rightarrow {S_n} = \sum\limits_{k = 1}^n {\left( {{k^4} + 5{k^3} + 6{k^2} + {k^3} + 5{k^2} + 6k} \right)} $
$ \Rightarrow {S_n} = \sum\limits_{k = 1}^n {\left( {{k^4} + 6{k^3} + 11{k^2} + 6k} \right)} $
Now separate its terms we have,
$ \Rightarrow {S_n} = \sum\limits_{k = 1}^n {{k^4}} + 6\sum\limits_{k = 1}^n {{k^3}} + 11\sum\limits_{k = 1}^n {{k^2}} + 6\sum\limits_{k = 1}^n k $
Now as we know that, \[\sum\limits_{k = 1}^n k = \dfrac{{n\left( {n + 1} \right)}}{2},\sum\limits_{k = 1}^n {{k^2}} = \dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6},\sum\limits_{k = 1}^n {{k^3}} = {\left( {\dfrac{{n\left( {n + 1} \right)}}{2}} \right)^2}\]
And, $ \sum\limits_{k = 1}^n {{k^4}} = \dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)\left( {3{n^2} + 3n - 1} \right)}}{{30}} $ now substitute these values in the above equation we have,
$ \Rightarrow {S_n} = 6\dfrac{{n\left( {n + 1} \right)}}{2} + 11\dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6} + 6{\left( {\dfrac{{n\left( {n + 1} \right)}}{2}} \right)^2} + \dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)\left( {3{n^2} + 3n - 1} \right)}}{{30}} $
$ \Rightarrow {S_n} = 3{n^2} + 3 + 11\dfrac{{\left( {{n^2} + n} \right)\left( {2n + 1} \right)}}{6} + 6\left( {\dfrac{{{n^2}{{\left( {n + 1} \right)}^2}}}{4}} \right) + \dfrac{{\left( {{n^2} + n} \right)\left( {2n + 1} \right)\left( {3{n^2} + 3n - 1} \right)}}{{30}} $
$ \Rightarrow {S_n} = 3{n^2} + 3 + 11\dfrac{{\left( {2{n^3} + {n^2} + 2{n^2} + n} \right)}}{6} + 6\left( {\dfrac{{{n^2}\left( {{n^2} + 1 + 2n} \right)}}{4}} \right) + \dfrac{{\left( {2{n^3} + {n^2} + 2{n^2} + n} \right)\left( {3{n^2} + 3n - 1} \right)}}{{30}} $
$ \Rightarrow {S_n} = 3{n^2} + 3 + 11\dfrac{{\left( {2{n^3} + 3{n^2} + n} \right)}}{6} + 6\dfrac{{\left( {{n^4} + {n^2} + 2{n^3}} \right)}}{4} + \dfrac{{\left( {2{n^3} + 3{n^2} + n} \right)\left( {3{n^2} + 3n - 1} \right)}}{{30}} $
$ \Rightarrow {S_n} = 3{n^2} + 3 + \dfrac{{11}}{3}{n^3} + \dfrac{{11}}{2}{n^2} + 11\dfrac{n}{6} + \dfrac{3}{2}{n^4} + \dfrac{3}{2}{n^2} + 3{n^3} + \dfrac{{\left( {6{n^5} + 15{n^4} + 10{n^3} - n} \right)}}{{30}} $
$ \Rightarrow {S_n} = 3{n^2} + 3 + \dfrac{{11}}{3}{n^3} + \dfrac{{11}}{2}{n^2} + 11\dfrac{n}{6} + \dfrac{3}{2}{n^4} + \dfrac{3}{2}{n^2} + 3{n^3} + \dfrac{1}{5}{n^5} + \dfrac{1}{2}{n^4} + \dfrac{1}{3}{n^3} - \dfrac{1}{{30}}n $
$ \Rightarrow {S_n} = \dfrac{1}{5}{n^5} + \dfrac{1}{2}{n^4} + \dfrac{3}{2}{n^4} + \dfrac{{11}}{3}{n^3} + 3{n^3} + \dfrac{1}{3}{n^3} + 3{n^2} + \dfrac{{11}}{2}{n^2} + \dfrac{3}{2}{n^2} + \dfrac{{11}}{6}n - \dfrac{1}{{30}}n + 3 $
$ \Rightarrow {S_n} = \dfrac{1}{5}{n^5} + {n^4}\left( {\dfrac{1}{2} + \dfrac{3}{2}} \right) + {n^3}\left( {\dfrac{{11}}{3} + 3 + \dfrac{1}{3}} \right) + {n^2}\left( {3 + \dfrac{{11}}{2} + \dfrac{3}{2}} \right) + n\left( {\dfrac{{11}}{6} - \dfrac{1}{{30}}} \right) + 3 $
$ \Rightarrow {S_n} = \dfrac{1}{5}{n^5} + 2{n^4} + 7{n^3} + 10{n^2} + \dfrac{9}{5}n + 3 $
So this is the required sum of the given series.
Note: Whenever we face such types of questions the key concept we have to remember is that always recall the formulas of the sum of first natural numbers, square of first natural numbers, cube of first natural numbers, fourth power of first natural numbers which is all stated above so simply substitute then and simplify we will get the required sum of the given series.
Complete step-by-step answer:
Given series is,
1.2.3.4 + 2.3.4.5+ 3.4.5.6 +.................
We have to find out the sum of this series.
So first find out the general term of this series, i.e. $ {k^{th}} $ term.
So when we observe carefully the $ {k^{th}} $ term is given as, k (K + 1) (k + 2) (k + 3)
Now apply summation so the sum of the given series is written as,
$ \Rightarrow {S_n} = \sum\limits_{k = 1}^n {k\left( {k + 1} \right)\left( {k + 2} \right)\left( {k + 3} \right)} $
Now simplify this we have,
$ \Rightarrow {S_n} = \sum\limits_{k = 1}^n {\left( {{k^2} + k} \right)\left( {{k^2} + 5k + 6} \right)} $
$ \Rightarrow {S_n} = \sum\limits_{k = 1}^n {\left( {{k^4} + 5{k^3} + 6{k^2} + {k^3} + 5{k^2} + 6k} \right)} $
$ \Rightarrow {S_n} = \sum\limits_{k = 1}^n {\left( {{k^4} + 6{k^3} + 11{k^2} + 6k} \right)} $
Now separate its terms we have,
$ \Rightarrow {S_n} = \sum\limits_{k = 1}^n {{k^4}} + 6\sum\limits_{k = 1}^n {{k^3}} + 11\sum\limits_{k = 1}^n {{k^2}} + 6\sum\limits_{k = 1}^n k $
Now as we know that, \[\sum\limits_{k = 1}^n k = \dfrac{{n\left( {n + 1} \right)}}{2},\sum\limits_{k = 1}^n {{k^2}} = \dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6},\sum\limits_{k = 1}^n {{k^3}} = {\left( {\dfrac{{n\left( {n + 1} \right)}}{2}} \right)^2}\]
And, $ \sum\limits_{k = 1}^n {{k^4}} = \dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)\left( {3{n^2} + 3n - 1} \right)}}{{30}} $ now substitute these values in the above equation we have,
$ \Rightarrow {S_n} = 6\dfrac{{n\left( {n + 1} \right)}}{2} + 11\dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6} + 6{\left( {\dfrac{{n\left( {n + 1} \right)}}{2}} \right)^2} + \dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)\left( {3{n^2} + 3n - 1} \right)}}{{30}} $
$ \Rightarrow {S_n} = 3{n^2} + 3 + 11\dfrac{{\left( {{n^2} + n} \right)\left( {2n + 1} \right)}}{6} + 6\left( {\dfrac{{{n^2}{{\left( {n + 1} \right)}^2}}}{4}} \right) + \dfrac{{\left( {{n^2} + n} \right)\left( {2n + 1} \right)\left( {3{n^2} + 3n - 1} \right)}}{{30}} $
$ \Rightarrow {S_n} = 3{n^2} + 3 + 11\dfrac{{\left( {2{n^3} + {n^2} + 2{n^2} + n} \right)}}{6} + 6\left( {\dfrac{{{n^2}\left( {{n^2} + 1 + 2n} \right)}}{4}} \right) + \dfrac{{\left( {2{n^3} + {n^2} + 2{n^2} + n} \right)\left( {3{n^2} + 3n - 1} \right)}}{{30}} $
$ \Rightarrow {S_n} = 3{n^2} + 3 + 11\dfrac{{\left( {2{n^3} + 3{n^2} + n} \right)}}{6} + 6\dfrac{{\left( {{n^4} + {n^2} + 2{n^3}} \right)}}{4} + \dfrac{{\left( {2{n^3} + 3{n^2} + n} \right)\left( {3{n^2} + 3n - 1} \right)}}{{30}} $
$ \Rightarrow {S_n} = 3{n^2} + 3 + \dfrac{{11}}{3}{n^3} + \dfrac{{11}}{2}{n^2} + 11\dfrac{n}{6} + \dfrac{3}{2}{n^4} + \dfrac{3}{2}{n^2} + 3{n^3} + \dfrac{{\left( {6{n^5} + 15{n^4} + 10{n^3} - n} \right)}}{{30}} $
$ \Rightarrow {S_n} = 3{n^2} + 3 + \dfrac{{11}}{3}{n^3} + \dfrac{{11}}{2}{n^2} + 11\dfrac{n}{6} + \dfrac{3}{2}{n^4} + \dfrac{3}{2}{n^2} + 3{n^3} + \dfrac{1}{5}{n^5} + \dfrac{1}{2}{n^4} + \dfrac{1}{3}{n^3} - \dfrac{1}{{30}}n $
$ \Rightarrow {S_n} = \dfrac{1}{5}{n^5} + \dfrac{1}{2}{n^4} + \dfrac{3}{2}{n^4} + \dfrac{{11}}{3}{n^3} + 3{n^3} + \dfrac{1}{3}{n^3} + 3{n^2} + \dfrac{{11}}{2}{n^2} + \dfrac{3}{2}{n^2} + \dfrac{{11}}{6}n - \dfrac{1}{{30}}n + 3 $
$ \Rightarrow {S_n} = \dfrac{1}{5}{n^5} + {n^4}\left( {\dfrac{1}{2} + \dfrac{3}{2}} \right) + {n^3}\left( {\dfrac{{11}}{3} + 3 + \dfrac{1}{3}} \right) + {n^2}\left( {3 + \dfrac{{11}}{2} + \dfrac{3}{2}} \right) + n\left( {\dfrac{{11}}{6} - \dfrac{1}{{30}}} \right) + 3 $
$ \Rightarrow {S_n} = \dfrac{1}{5}{n^5} + 2{n^4} + 7{n^3} + 10{n^2} + \dfrac{9}{5}n + 3 $
So this is the required sum of the given series.
Note: Whenever we face such types of questions the key concept we have to remember is that always recall the formulas of the sum of first natural numbers, square of first natural numbers, cube of first natural numbers, fourth power of first natural numbers which is all stated above so simply substitute then and simplify we will get the required sum of the given series.
Recently Updated Pages
Three beakers labelled as A B and C each containing 25 mL of water were taken A small amount of NaOH anhydrous CuSO4 and NaCl were added to the beakers A B and C respectively It was observed that there was an increase in the temperature of the solutions contained in beakers A and B whereas in case of beaker C the temperature of the solution falls Which one of the following statements isarecorrect i In beakers A and B exothermic process has occurred ii In beakers A and B endothermic process has occurred iii In beaker C exothermic process has occurred iv In beaker C endothermic process has occurred

Questions & Answers - Ask your doubts

Master Class 9 Social Science: Engaging Questions & Answers for Success

Class 9 Question and Answer - Your Ultimate Solutions Guide

Master Class 8 Science: Engaging Questions & Answers for Success

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Explain zero factorial class 11 maths CBSE

State the laws of reflection of light

Difference Between Prokaryotic Cells and Eukaryotic Cells

Show that total energy of a freely falling body remains class 11 physics CBSE

