
Sum of the following series up to n terms is
1.2.3.4 + 2.3.4.5+ 3.4.5.6 +.................
Answer
581.1k+ views
Hint: In this particular question first find out the $ {k^{th}} $ term of the given series, then apply summation in the $ {k^{th}} $ term from 1 to n, then apply direct general formula of the summation such as, $ \sum\limits_{k = 1}^n k = \dfrac{{n\left( {n + 1} \right)}}{2},\sum\limits_{k = 1}^n {{k^2}} = \dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6} $ and so on, so use these concepts to reach the solution of the question.
Complete step-by-step answer:
Given series is,
1.2.3.4 + 2.3.4.5+ 3.4.5.6 +.................
We have to find out the sum of this series.
So first find out the general term of this series, i.e. $ {k^{th}} $ term.
So when we observe carefully the $ {k^{th}} $ term is given as, k (K + 1) (k + 2) (k + 3)
Now apply summation so the sum of the given series is written as,
$ \Rightarrow {S_n} = \sum\limits_{k = 1}^n {k\left( {k + 1} \right)\left( {k + 2} \right)\left( {k + 3} \right)} $
Now simplify this we have,
$ \Rightarrow {S_n} = \sum\limits_{k = 1}^n {\left( {{k^2} + k} \right)\left( {{k^2} + 5k + 6} \right)} $
$ \Rightarrow {S_n} = \sum\limits_{k = 1}^n {\left( {{k^4} + 5{k^3} + 6{k^2} + {k^3} + 5{k^2} + 6k} \right)} $
$ \Rightarrow {S_n} = \sum\limits_{k = 1}^n {\left( {{k^4} + 6{k^3} + 11{k^2} + 6k} \right)} $
Now separate its terms we have,
$ \Rightarrow {S_n} = \sum\limits_{k = 1}^n {{k^4}} + 6\sum\limits_{k = 1}^n {{k^3}} + 11\sum\limits_{k = 1}^n {{k^2}} + 6\sum\limits_{k = 1}^n k $
Now as we know that, \[\sum\limits_{k = 1}^n k = \dfrac{{n\left( {n + 1} \right)}}{2},\sum\limits_{k = 1}^n {{k^2}} = \dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6},\sum\limits_{k = 1}^n {{k^3}} = {\left( {\dfrac{{n\left( {n + 1} \right)}}{2}} \right)^2}\]
And, $ \sum\limits_{k = 1}^n {{k^4}} = \dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)\left( {3{n^2} + 3n - 1} \right)}}{{30}} $ now substitute these values in the above equation we have,
$ \Rightarrow {S_n} = 6\dfrac{{n\left( {n + 1} \right)}}{2} + 11\dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6} + 6{\left( {\dfrac{{n\left( {n + 1} \right)}}{2}} \right)^2} + \dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)\left( {3{n^2} + 3n - 1} \right)}}{{30}} $
$ \Rightarrow {S_n} = 3{n^2} + 3 + 11\dfrac{{\left( {{n^2} + n} \right)\left( {2n + 1} \right)}}{6} + 6\left( {\dfrac{{{n^2}{{\left( {n + 1} \right)}^2}}}{4}} \right) + \dfrac{{\left( {{n^2} + n} \right)\left( {2n + 1} \right)\left( {3{n^2} + 3n - 1} \right)}}{{30}} $
$ \Rightarrow {S_n} = 3{n^2} + 3 + 11\dfrac{{\left( {2{n^3} + {n^2} + 2{n^2} + n} \right)}}{6} + 6\left( {\dfrac{{{n^2}\left( {{n^2} + 1 + 2n} \right)}}{4}} \right) + \dfrac{{\left( {2{n^3} + {n^2} + 2{n^2} + n} \right)\left( {3{n^2} + 3n - 1} \right)}}{{30}} $
$ \Rightarrow {S_n} = 3{n^2} + 3 + 11\dfrac{{\left( {2{n^3} + 3{n^2} + n} \right)}}{6} + 6\dfrac{{\left( {{n^4} + {n^2} + 2{n^3}} \right)}}{4} + \dfrac{{\left( {2{n^3} + 3{n^2} + n} \right)\left( {3{n^2} + 3n - 1} \right)}}{{30}} $
$ \Rightarrow {S_n} = 3{n^2} + 3 + \dfrac{{11}}{3}{n^3} + \dfrac{{11}}{2}{n^2} + 11\dfrac{n}{6} + \dfrac{3}{2}{n^4} + \dfrac{3}{2}{n^2} + 3{n^3} + \dfrac{{\left( {6{n^5} + 15{n^4} + 10{n^3} - n} \right)}}{{30}} $
$ \Rightarrow {S_n} = 3{n^2} + 3 + \dfrac{{11}}{3}{n^3} + \dfrac{{11}}{2}{n^2} + 11\dfrac{n}{6} + \dfrac{3}{2}{n^4} + \dfrac{3}{2}{n^2} + 3{n^3} + \dfrac{1}{5}{n^5} + \dfrac{1}{2}{n^4} + \dfrac{1}{3}{n^3} - \dfrac{1}{{30}}n $
$ \Rightarrow {S_n} = \dfrac{1}{5}{n^5} + \dfrac{1}{2}{n^4} + \dfrac{3}{2}{n^4} + \dfrac{{11}}{3}{n^3} + 3{n^3} + \dfrac{1}{3}{n^3} + 3{n^2} + \dfrac{{11}}{2}{n^2} + \dfrac{3}{2}{n^2} + \dfrac{{11}}{6}n - \dfrac{1}{{30}}n + 3 $
$ \Rightarrow {S_n} = \dfrac{1}{5}{n^5} + {n^4}\left( {\dfrac{1}{2} + \dfrac{3}{2}} \right) + {n^3}\left( {\dfrac{{11}}{3} + 3 + \dfrac{1}{3}} \right) + {n^2}\left( {3 + \dfrac{{11}}{2} + \dfrac{3}{2}} \right) + n\left( {\dfrac{{11}}{6} - \dfrac{1}{{30}}} \right) + 3 $
$ \Rightarrow {S_n} = \dfrac{1}{5}{n^5} + 2{n^4} + 7{n^3} + 10{n^2} + \dfrac{9}{5}n + 3 $
So this is the required sum of the given series.
Note: Whenever we face such types of questions the key concept we have to remember is that always recall the formulas of the sum of first natural numbers, square of first natural numbers, cube of first natural numbers, fourth power of first natural numbers which is all stated above so simply substitute then and simplify we will get the required sum of the given series.
Complete step-by-step answer:
Given series is,
1.2.3.4 + 2.3.4.5+ 3.4.5.6 +.................
We have to find out the sum of this series.
So first find out the general term of this series, i.e. $ {k^{th}} $ term.
So when we observe carefully the $ {k^{th}} $ term is given as, k (K + 1) (k + 2) (k + 3)
Now apply summation so the sum of the given series is written as,
$ \Rightarrow {S_n} = \sum\limits_{k = 1}^n {k\left( {k + 1} \right)\left( {k + 2} \right)\left( {k + 3} \right)} $
Now simplify this we have,
$ \Rightarrow {S_n} = \sum\limits_{k = 1}^n {\left( {{k^2} + k} \right)\left( {{k^2} + 5k + 6} \right)} $
$ \Rightarrow {S_n} = \sum\limits_{k = 1}^n {\left( {{k^4} + 5{k^3} + 6{k^2} + {k^3} + 5{k^2} + 6k} \right)} $
$ \Rightarrow {S_n} = \sum\limits_{k = 1}^n {\left( {{k^4} + 6{k^3} + 11{k^2} + 6k} \right)} $
Now separate its terms we have,
$ \Rightarrow {S_n} = \sum\limits_{k = 1}^n {{k^4}} + 6\sum\limits_{k = 1}^n {{k^3}} + 11\sum\limits_{k = 1}^n {{k^2}} + 6\sum\limits_{k = 1}^n k $
Now as we know that, \[\sum\limits_{k = 1}^n k = \dfrac{{n\left( {n + 1} \right)}}{2},\sum\limits_{k = 1}^n {{k^2}} = \dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6},\sum\limits_{k = 1}^n {{k^3}} = {\left( {\dfrac{{n\left( {n + 1} \right)}}{2}} \right)^2}\]
And, $ \sum\limits_{k = 1}^n {{k^4}} = \dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)\left( {3{n^2} + 3n - 1} \right)}}{{30}} $ now substitute these values in the above equation we have,
$ \Rightarrow {S_n} = 6\dfrac{{n\left( {n + 1} \right)}}{2} + 11\dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6} + 6{\left( {\dfrac{{n\left( {n + 1} \right)}}{2}} \right)^2} + \dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)\left( {3{n^2} + 3n - 1} \right)}}{{30}} $
$ \Rightarrow {S_n} = 3{n^2} + 3 + 11\dfrac{{\left( {{n^2} + n} \right)\left( {2n + 1} \right)}}{6} + 6\left( {\dfrac{{{n^2}{{\left( {n + 1} \right)}^2}}}{4}} \right) + \dfrac{{\left( {{n^2} + n} \right)\left( {2n + 1} \right)\left( {3{n^2} + 3n - 1} \right)}}{{30}} $
$ \Rightarrow {S_n} = 3{n^2} + 3 + 11\dfrac{{\left( {2{n^3} + {n^2} + 2{n^2} + n} \right)}}{6} + 6\left( {\dfrac{{{n^2}\left( {{n^2} + 1 + 2n} \right)}}{4}} \right) + \dfrac{{\left( {2{n^3} + {n^2} + 2{n^2} + n} \right)\left( {3{n^2} + 3n - 1} \right)}}{{30}} $
$ \Rightarrow {S_n} = 3{n^2} + 3 + 11\dfrac{{\left( {2{n^3} + 3{n^2} + n} \right)}}{6} + 6\dfrac{{\left( {{n^4} + {n^2} + 2{n^3}} \right)}}{4} + \dfrac{{\left( {2{n^3} + 3{n^2} + n} \right)\left( {3{n^2} + 3n - 1} \right)}}{{30}} $
$ \Rightarrow {S_n} = 3{n^2} + 3 + \dfrac{{11}}{3}{n^3} + \dfrac{{11}}{2}{n^2} + 11\dfrac{n}{6} + \dfrac{3}{2}{n^4} + \dfrac{3}{2}{n^2} + 3{n^3} + \dfrac{{\left( {6{n^5} + 15{n^4} + 10{n^3} - n} \right)}}{{30}} $
$ \Rightarrow {S_n} = 3{n^2} + 3 + \dfrac{{11}}{3}{n^3} + \dfrac{{11}}{2}{n^2} + 11\dfrac{n}{6} + \dfrac{3}{2}{n^4} + \dfrac{3}{2}{n^2} + 3{n^3} + \dfrac{1}{5}{n^5} + \dfrac{1}{2}{n^4} + \dfrac{1}{3}{n^3} - \dfrac{1}{{30}}n $
$ \Rightarrow {S_n} = \dfrac{1}{5}{n^5} + \dfrac{1}{2}{n^4} + \dfrac{3}{2}{n^4} + \dfrac{{11}}{3}{n^3} + 3{n^3} + \dfrac{1}{3}{n^3} + 3{n^2} + \dfrac{{11}}{2}{n^2} + \dfrac{3}{2}{n^2} + \dfrac{{11}}{6}n - \dfrac{1}{{30}}n + 3 $
$ \Rightarrow {S_n} = \dfrac{1}{5}{n^5} + {n^4}\left( {\dfrac{1}{2} + \dfrac{3}{2}} \right) + {n^3}\left( {\dfrac{{11}}{3} + 3 + \dfrac{1}{3}} \right) + {n^2}\left( {3 + \dfrac{{11}}{2} + \dfrac{3}{2}} \right) + n\left( {\dfrac{{11}}{6} - \dfrac{1}{{30}}} \right) + 3 $
$ \Rightarrow {S_n} = \dfrac{1}{5}{n^5} + 2{n^4} + 7{n^3} + 10{n^2} + \dfrac{9}{5}n + 3 $
So this is the required sum of the given series.
Note: Whenever we face such types of questions the key concept we have to remember is that always recall the formulas of the sum of first natural numbers, square of first natural numbers, cube of first natural numbers, fourth power of first natural numbers which is all stated above so simply substitute then and simplify we will get the required sum of the given series.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

