
Sulfur dioxide and oxygen were allowed to diffuse through a porous partition. $20\text{ }d{{m}^{3}}$ of $S{{O}_{2}}$ diffuse through the porous partition in 60 sec. The volume of ${{O}_{2}}$ in $d{{m}^{3}}$ which diffuses under the similar condition in 30sec will be: (Atomic mass of sulfur 32 u)
(A) 7.09
(B) 14.1
(C) 10.0
(D) 28.2
Answer
555.3k+ views
Hint: The rate of diffusion is directly proportional to the ratio of volume to the time taken and the rate of the diffusion is inversely proportional to the square root of the atomic mass of the element. Combine these two we can solve the volume of oxygen.
Complete step by step solution:
The rate of the diffusion or effusion is directly proportional to the ratio of the volume to the time taken. This is written as:
$r\propto \dfrac{V}{t}$
So, the rate of diffusion of sulfur dioxide is directly proportional to the ratio of the volume of sulfur dioxide to the time taken of sulfur dioxide.
${{r}_{S{{O}_{2}}}}\propto \dfrac{{{V}_{S{{O}_{2}}}}}{{{t}_{S{{O}_{2}}}}}$
And the rate of diffusion of oxygen is directly proportional to the ratio of the volume of oxygen to the time taken of oxygen.
${{r}_{{{O}_{2}}}}\propto \dfrac{{{V}_{{{O}_{2}}}}}{{{t}_{{{O}_{2}}}}}$
Rate of the diffusion is inversely proportional to the square root of the atomic mass of the element.
$r\propto \dfrac{1}{\sqrt{M}}$
Rate of the diffusion of sulfur dioxide is inversely proportional to the square root of the atomic mass of the sulfur dioxide.
${{r}_{S{{O}_{2}}}}\propto \dfrac{1}{\sqrt{{{M}_{S{{O}_{2}}}}}}$
Rate of the diffusion of oxygen is inversely proportional to the square root of the atomic mass of the oxygen.
${{r}_{{{O}_{2}}}}\propto \dfrac{1}{\sqrt{{{M}_{{{O}_{2}}}}}}$
So combining the above relation can be used to derive the volume of the oxygen.
$\dfrac{{{r}_{{{O}_{2}}}}}{{{r}_{S{{O}_{2}}}}}=\dfrac{\dfrac{{{V}_{{{O}_{2}}}}}{{{t}_{{{O}_{2}}}}}}{\dfrac{{{V}_{S{{O}_{2}}}}}{{{t}_{S{{O}_{2}}}}}}$
$\dfrac{{{r}_{{{O}_{2}}}}}{{{r}_{S{{O}_{2}}}}}=\dfrac{{{V}_{{{O}_{2}}}}}{{{V}_{S{{O}_{2}}}}} \times \text{ }\dfrac{{{t}_{S{{O}_{2}}}}}{{{t}_{{{O}_{2}}}}}$
$r\propto \dfrac{\sqrt{{{M}_{S{{O}_{2}}}}}}{\sqrt{{{M}_{{{O}_{2}}}}}}$
Equating both, we get
$\dfrac{{{V}_{{{O}_{2}}}}}{{{V}_{S{{O}_{2}}}}} \times \text{ }\dfrac{{{t}_{S{{O}_{2}}}}}{{{t}_{{{O}_{2}}}}}=\dfrac{\sqrt{{{M}_{S{{O}_{2}}}}}}{\sqrt{{{M}_{{{O}_{2}}}}}}$
${{V}_{{{O}_{2}}}}=\dfrac{\sqrt{{{M}_{S{{O}_{2}}}}}}{\sqrt{{{M}_{{{O}_{2}}}}}} \times \text{ }\dfrac{{{t}_{{{O}_{2}}}}}{{{t}_{S{{O}_{2}}}}} \times \text{ }{{V}_{S{{O}_{2}}}}$
So, the values from the question can be applied on this equation, we get
${{V}_{{{O}_{2}}}}=\dfrac{\sqrt{32+32}}{\sqrt{32}} \times \text{ }\dfrac{30}{60} \times \text{ 20}$
${{V}_{{{O}_{2}}}}=10\sqrt{2}=14.1\text{ }d{{m}^{3}}$
Therefore, the correct answer is an option (B)- 14.1.
Note: The rate of diffusion or effusion is also inversely proportional to the densities of the element and this helps to separate the gases having different densities. These formulas can also be used to separate isotopes.
Complete step by step solution:
The rate of the diffusion or effusion is directly proportional to the ratio of the volume to the time taken. This is written as:
$r\propto \dfrac{V}{t}$
So, the rate of diffusion of sulfur dioxide is directly proportional to the ratio of the volume of sulfur dioxide to the time taken of sulfur dioxide.
${{r}_{S{{O}_{2}}}}\propto \dfrac{{{V}_{S{{O}_{2}}}}}{{{t}_{S{{O}_{2}}}}}$
And the rate of diffusion of oxygen is directly proportional to the ratio of the volume of oxygen to the time taken of oxygen.
${{r}_{{{O}_{2}}}}\propto \dfrac{{{V}_{{{O}_{2}}}}}{{{t}_{{{O}_{2}}}}}$
Rate of the diffusion is inversely proportional to the square root of the atomic mass of the element.
$r\propto \dfrac{1}{\sqrt{M}}$
Rate of the diffusion of sulfur dioxide is inversely proportional to the square root of the atomic mass of the sulfur dioxide.
${{r}_{S{{O}_{2}}}}\propto \dfrac{1}{\sqrt{{{M}_{S{{O}_{2}}}}}}$
Rate of the diffusion of oxygen is inversely proportional to the square root of the atomic mass of the oxygen.
${{r}_{{{O}_{2}}}}\propto \dfrac{1}{\sqrt{{{M}_{{{O}_{2}}}}}}$
So combining the above relation can be used to derive the volume of the oxygen.
$\dfrac{{{r}_{{{O}_{2}}}}}{{{r}_{S{{O}_{2}}}}}=\dfrac{\dfrac{{{V}_{{{O}_{2}}}}}{{{t}_{{{O}_{2}}}}}}{\dfrac{{{V}_{S{{O}_{2}}}}}{{{t}_{S{{O}_{2}}}}}}$
$\dfrac{{{r}_{{{O}_{2}}}}}{{{r}_{S{{O}_{2}}}}}=\dfrac{{{V}_{{{O}_{2}}}}}{{{V}_{S{{O}_{2}}}}} \times \text{ }\dfrac{{{t}_{S{{O}_{2}}}}}{{{t}_{{{O}_{2}}}}}$
$r\propto \dfrac{\sqrt{{{M}_{S{{O}_{2}}}}}}{\sqrt{{{M}_{{{O}_{2}}}}}}$
Equating both, we get
$\dfrac{{{V}_{{{O}_{2}}}}}{{{V}_{S{{O}_{2}}}}} \times \text{ }\dfrac{{{t}_{S{{O}_{2}}}}}{{{t}_{{{O}_{2}}}}}=\dfrac{\sqrt{{{M}_{S{{O}_{2}}}}}}{\sqrt{{{M}_{{{O}_{2}}}}}}$
${{V}_{{{O}_{2}}}}=\dfrac{\sqrt{{{M}_{S{{O}_{2}}}}}}{\sqrt{{{M}_{{{O}_{2}}}}}} \times \text{ }\dfrac{{{t}_{{{O}_{2}}}}}{{{t}_{S{{O}_{2}}}}} \times \text{ }{{V}_{S{{O}_{2}}}}$
So, the values from the question can be applied on this equation, we get
${{V}_{{{O}_{2}}}}=\dfrac{\sqrt{32+32}}{\sqrt{32}} \times \text{ }\dfrac{30}{60} \times \text{ 20}$
${{V}_{{{O}_{2}}}}=10\sqrt{2}=14.1\text{ }d{{m}^{3}}$
Therefore, the correct answer is an option (B)- 14.1.
Note: The rate of diffusion or effusion is also inversely proportional to the densities of the element and this helps to separate the gases having different densities. These formulas can also be used to separate isotopes.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

