Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store
seo-qna
SearchIcon
banner

State whether True or False.
The H.C.F. and L.C.M. of:
\[{a^2}{b^2} - {\text{ }}{b^4},{\text{ }}a{b^2} + {\text{ }}{b^3}and{\text{ }}ab{\text{ }}-{\text{ }}{b^2}is{\text{ }}b;{\text{ }}{b^2}\left( {{a^2} - {\text{ }}{b^2}} \right)\]
If true then enter \[1\] and if false then enter \[0.\]

Answer
VerifiedVerified
510k+ views
Hint: We will start by taking factors of \[{a^2}{b^2} - {\text{ }}{b^4},{\text{ }}a{b^2} + {\text{ }}{b^3}and{\text{ }}ab{\text{ }}-{\text{ }}{b^2}is{\text{ }}b;{\text{ }}{b^2}\left( {{a^2} - {\text{ }}{b^2}} \right)\]\[.\]
Then we will obtain H.C.F. and L.C.M. and check whether it’s true or false.

Complete step-by-step answer:
The relation between H.C.F. and L.C.M. of two polynomials is the product of the two polynomials is equal to the product of their H.C.F. and L.C.M. If p(x) and q(x) are two polynomials, then p(x) ∙ q(x) = {H.C.F. of p(x) and q(x)} x {L.C.M. of p(x) and q(x)}. 1.

Step 1: On factorizing \[{a^2}{b^2} - {\text{ }}{b^4},\] we get
\[{a^2}{b^2} - {\text{ }}{b^4} = {\text{ }}{b^2}\left( {{a^2} - {\text{ }}{b^2}} \right){\text{ }} = {\text{ }}{b^2}\left( {{a^{}} + {\text{ }}b} \right){\text{ }}\left( {{a^{}} - {\text{ }}b} \right)\;\; \ldots .\left( 1 \right)\;\]
Step 2: On factorizing \[a{b^2} + {\text{ }}{b^3},\] we get
\[a{b^2} + {\text{ }}{b^3} = {\text{ }}{b^2}\left( {{a^{}} + {\text{ }}b} \right)\;\;\; \ldots .\left( 2 \right)\;\]
Step 3: On factorizing \[ab{\text{ }}-{\text{ }}{b^2},\] we get
\[ab{\text{ }}-{\text{ }}{b^2} = {\text{ }}b{\text{ }}\left( {{a^{}} - {\text{ }}b} \right)\;....\left( 3 \right)\;\]
Now from, \[\left( 1 \right),{\text{ }}\left( 2 \right),{\text{ }}\left( 3 \right)\]
H.C.F. \[ = {\text{ }}b\]
L.C.M. \[ = {\text{ }}{b^2}\left( {{a^2} - {\text{ }}{b^2}} \right)\]
Thus, true H.C.F. and L.C.M. is \[b\] and \[{b^2}\left( {{a^2} - {\text{ }}{b^2}} \right).\]Hence, \[1.\]

Note: H.C.F. stands for highest common factors, is the greatest number which divides the given numbers. L.C.M. stands for Least Common Multiple, is the smallest number which is a multiple of given numbers.
WhatsApp Banner