
State, by writing first four terms, the expansion of following, where \[\left| x \right| < 1\]
(i) \[{\left( {1 + x} \right)^{ - 4}}\]
(ii) \[{\left( {1 - x} \right)^{ - \dfrac{1}{3}}}\]
(iii) \[{\left( {1 - {x^2}} \right)^{ - 3}}\]
(iv) \[{\left( {1 + x} \right)^{ - \dfrac{1}{5}}}\]
Answer
500.1k+ views
Hint:Here in this question, we have to write the first four terms by expanding each binomial expression. Given a four binomial expression having finite power this each expression can be expand by using a binomial theorem i.e., \[{\left( {a + b} \right)^n} = \sum\limits_{r = 0}^n {^n{C_r}\,{a^{n - r}} \cdot {b^r}} \], where \[^n{C_r} = \dfrac{{n!}}{{\left( {n - r} \right)!r!}}\] to get the required solution.
Complete step by step answer:
Binomial Theorem is used to solve any binomial expressions in a simplest way. It gives an expression to calculate the expansion form of \[{\left( {a + b} \right)^n}\] for any positive integer n. The Binomial theorem is stated as: \[{\left( {a + b} \right)^n} = \sum\limits_{r = 0}^n {^n{C_r}\,{a^{n - r}} \cdot {b^r}} \] or
\[{\left( {a + b} \right)^n} = {\,^n}{C_0}\,{a^n} + {\,^n}{C_1}\,{a^{n - 1}}{b^1} + {\,^n}{C_2}\,{a^{n - 2}}{b^2} + ..... + {\,^n}{C_r}\,{a^{n - r}}{b^r} + ..... + {\,^n}{C_n}\,{b^n}\]-------(1)
If, \[\left| x \right| < 1\] then the binomial expansion is can be written as sum of an infinite series
\[ \Rightarrow \,\,{\left( {1 + x} \right)^{ - n}} = \,1 + \dfrac{{ - n}}{1} \cdot {x^1} + \dfrac{{\left( { - n} \right)\left( { - n - 1} \right)}}{{1 \times 2}} \cdot {x^2} + \dfrac{{\left( { - n} \right)\left( { - n - 1} \right)\left( { - n - 2} \right)}}{{1 \times 2 \times 3}} \cdot {x^3} + ..... + \dfrac{{\left( { - n} \right)\left( { - n - 1} \right)\left( { - n - 2} \right)...\left( { - n - r + 1} \right)}}{{1 \times 2 \times ... \times r}} \cdot {x^r} + .....\infty \]
On simplification, we can written as
\[ \Rightarrow \,\,{\left( {1 + x} \right)^{ - n}} = \,1 - nx + \dfrac{{n\left( {n + 1} \right)}}{{2!}} \cdot {x^2} - \dfrac{{n\left( {n + 1} \right)\left( {n + 2} \right)}}{{3!}} \cdot {x^3} + ..... + {\left( { - 1} \right)^r}\dfrac{{n\left( {n + 1} \right)\left( {n + 2} \right)...\left( {n + r - 1} \right)}}{{r!}} \cdot {x^r} + .....\infty \]
-------(2)
The binomial expansion for \[{\left( {1 - x} \right)^{ - n}}\] is given by
\[ \Rightarrow \,\,{\left( {1 - x} \right)^{ - n}} = \,1 + nx + \dfrac{{n\left( {n + 1} \right)}}{{2!}} \cdot {x^2} + \dfrac{{n\left( {n + 1} \right)\left( {n + 2} \right)}}{{3!}} \cdot {x^3} + ..... + {\left( { - 1} \right)^r}\dfrac{{n\left( {n + 1} \right)\left( {n + 2} \right)...\left( {n + r - 1} \right)}}{{r!}} \cdot {x^r} + .....\infty \]
-------(3)
Consider the question: Given 4 binomial expression, we have to expand each expression up to first four terms:
(i) \[{\left( {1 + x} \right)^{ - 4}}\]
Now by using a expansion i.e., equation (2)
\[n = 4\]
On substituting, we have
\[ \Rightarrow \,\,{\left( {1 + x} \right)^{ - 4}} = \,1 - 4x + \dfrac{{4\left( {4 + 1} \right)}}{{2!}} \cdot {x^2} - \dfrac{{4\left( {4 + 1} \right)\left( {4 + 2} \right)}}{{3!}} \cdot {x^3} + .....\]
\[ \Rightarrow \,\,{\left( {1 + x} \right)^{ - 4}} = \,1 - 4x + \dfrac{{4\left( 5 \right)}}{2} \cdot {x^2} - \dfrac{{4\left( 5 \right)\left( 6 \right)}}{6} \cdot {x^3} + .....\]
\[ \Rightarrow \,\,{\left( {1 + x} \right)^{ - 4}} = \,1 - 4x + \dfrac{{20}}{2} \cdot {x^2} - \dfrac{{120}}{6} \cdot {x^3} + .....\]
The first four terms of binomial \[{\left( {1 + x} \right)^{ - 4}}\] is
\[\therefore \,\,{\left( {1 + x} \right)^{ - 4}} = \,1 - 4x + 10{x^2} - 20{x^3} + .....\].
(ii) \[{\left( {1 - x} \right)^{ - \dfrac{1}{3}}}\]
Now by using a expansion i.e., equation (3)
\[n = \dfrac{1}{3}\]
On substituting, we have
\[ \Rightarrow \,\,{\left( {1 - x} \right)^{ - \dfrac{1}{3}}} = \,1 + \dfrac{1}{3}x + \dfrac{{\dfrac{1}{3}\left( {\dfrac{1}{3} + 1} \right)}}{{2!}} \cdot {x^2} + \dfrac{{\dfrac{1}{3}\left( {\dfrac{1}{3} + 1} \right)\left( {\dfrac{1}{3} + 2} \right)}}{{3!}} \cdot {x^3} + .....\]
\[ \Rightarrow \,\,{\left( {1 - x} \right)^{ - \dfrac{1}{3}}} = \,1 + \dfrac{x}{3} + \dfrac{{\dfrac{1}{3}\left( {\dfrac{4}{3}} \right)}}{2} \cdot {x^2} + \dfrac{{\dfrac{1}{3}\left( {\dfrac{4}{3}} \right)\left( {\dfrac{7}{3}} \right)}}{6} \cdot {x^3} + .....\]
\[ \Rightarrow \,\,{\left( {1 - x} \right)^{ - \dfrac{1}{3}}} = \,1 + \dfrac{x}{3} + \dfrac{4}{{18}} \cdot {x^2} + \dfrac{{28}}{{162}} \cdot {x^3} + .....\]
The first four terms of binomial \[{\left( {1 - x} \right)^{ - \dfrac{1}{3}}}\] is
\[\therefore \,\,{\left( {1 - x} \right)^{ - \dfrac{1}{3}}} = \,1 + \dfrac{x}{3} + \dfrac{{2{x^2}}}{9} + \dfrac{{14{x^3}}}{{81}} + .....\].
(iii) \[{\left( {1 - {x^2}} \right)^{ - 3}}\]
Now by using a expansion i.e., equation (3)
\[n = 3\]
On substituting, we have
\[ \Rightarrow \,\,{\left( {1 - {x^2}} \right)^{ - 3}} = \,1 + 3.{x^2} + \dfrac{{3\left( {3 + 1} \right)}}{{2!}} \cdot {x^4} + \dfrac{{3\left( {3 + 1} \right)\left( {3 + 2} \right)}}{{3!}} \cdot {x^6} + .....\]
\[ \Rightarrow \,\,{\left( {1 - {x^2}} \right)^{ - 3}} = \,1 + 3{x^2} + \dfrac{{3\left( 4 \right)}}{2} \cdot {x^4} + \dfrac{{3\left( 4 \right)\left( 7 \right)}}{6} \cdot {x^6} + .....\]
\[ \Rightarrow \,\,{\left( {1 - {x^2}} \right)^{ - 3}} = \,1 + 3{x^2} + \dfrac{{12}}{2} \cdot {x^4} + \dfrac{{84}}{6} \cdot {x^6} + .....\]
The first four terms of binomial \[{\left( {1 - {x^2}} \right)^{ - 3}}\] is
\[\therefore \,\,{\left( {1 - {x^2}} \right)^{ - 3}} = \,1 + 3{x^2} + 6{x^4} + 14{x^6} + .....\]
(iv) \[{\left( {1 + x} \right)^{ - \dfrac{1}{5}}}\]
Now by using a expansion i.e., equation (2)
\[n = - \dfrac{1}{5}\]
On substituting, we have
\[ \Rightarrow \,\,{\left( {1 + x} \right)^{ - \dfrac{1}{5}}} = \,1 - \dfrac{1}{5}x + \dfrac{{\dfrac{1}{5}\left( {\dfrac{1}{5} + 1} \right)}}{{2!}} \cdot {x^2} - \dfrac{{\dfrac{1}{5}\left( {\dfrac{1}{5} + 1} \right)\left( {\dfrac{1}{5} + 2} \right)}}{{3!}} \cdot {x^3} + .....\]
\[ \Rightarrow \,\,{\left( {1 + x} \right)^{ - \dfrac{1}{5}}} = \,1 - \dfrac{x}{5} + \dfrac{{\dfrac{1}{5}\left( {\dfrac{6}{5}} \right)}}{2} \cdot {x^2} - \dfrac{{\dfrac{1}{5}\left( {\dfrac{6}{5}} \right)\left( {\dfrac{{11}}{5}} \right)}}{6} \cdot {x^3} + .....\]
\[ \Rightarrow \,\,{\left( {1 + x} \right)^{ - \dfrac{1}{5}}} = \,1 - \dfrac{x}{5} + \dfrac{6}{{50}} \cdot {x^2} - \dfrac{{66}}{{750}} \cdot {x^3} + .....\]
The first four terms of binomial \[{\left( {1 + x} \right)^{ - 4}}\] is
\[\therefore \,\,{\left( {1 + x} \right)^{ - \dfrac{1}{5}}} = \,1 - \dfrac{x}{5} + \dfrac{3}{{25}}{x^2} - \dfrac{6}{{125}}{x^3} + .....\].
Note: The four major binomial expansion is given as
\[{\left( {1 + x} \right)^n} = \,1 + nx + \dfrac{{n\left( {n + 1} \right)}}{{2!}} \cdot {x^2} + \dfrac{{n\left( {n + 1} \right)\left( {n + 2} \right)}}{{3!}} \cdot {x^3} + ..... + {\left( { - 1} \right)^r}\dfrac{{n\left( {n + 1} \right)\left( {n + 2} \right)...\left( {n + r - 1} \right)}}{{r!}} \cdot {x^r} + .....\infty \]
\[\Rightarrow {\left( {1 + x} \right)^{ - n}} = \,1 - nx + \dfrac{{n\left( {n + 1} \right)}}{{2!}} \cdot {x^2} - \dfrac{{n\left( {n + 1} \right)\left( {n + 2} \right)}}{{3!}} \cdot {x^3} + ..... + {\left( { - 1} \right)^r}\dfrac{{n\left( {n + 1} \right)\left( {n + 2} \right)...\left( {n + r - 1} \right)}}{{r!}} \cdot {x^r} + .....\infty \]
\[\Rightarrow {\left( {1 - x} \right)^n} = \,1 - nx + \dfrac{{n\left( {n + 1} \right)}}{{2!}} \cdot {x^2} - \dfrac{{n\left( {n + 1} \right)\left( {n + 2} \right)}}{{3!}} \cdot {x^3} + ..... + {\left( { - 1} \right)^r}\dfrac{{n\left( {n + 1} \right)\left( {n + 2} \right)...\left( {n + r - 1} \right)}}{{r!}} \cdot {x^r} + .....\infty \]
\[\Rightarrow {\left( {1 - x} \right)^{ - n}} = \,1 + nx + \dfrac{{n\left( {n + 1} \right)}}{{2!}} \cdot {x^2} + \dfrac{{n\left( {n + 1} \right)\left( {n + 2} \right)}}{{3!}} \cdot {x^3} + ..... + {\left( { - 1} \right)^r}\dfrac{{n\left( {n + 1} \right)\left( {n + 2} \right)...\left( {n + r - 1} \right)}}{{r!}} \cdot {x^r} + .....\infty \]
Using these expansions, any kind of problem can be solved. The value of $x$ will depend on the question.
Complete step by step answer:
Binomial Theorem is used to solve any binomial expressions in a simplest way. It gives an expression to calculate the expansion form of \[{\left( {a + b} \right)^n}\] for any positive integer n. The Binomial theorem is stated as: \[{\left( {a + b} \right)^n} = \sum\limits_{r = 0}^n {^n{C_r}\,{a^{n - r}} \cdot {b^r}} \] or
\[{\left( {a + b} \right)^n} = {\,^n}{C_0}\,{a^n} + {\,^n}{C_1}\,{a^{n - 1}}{b^1} + {\,^n}{C_2}\,{a^{n - 2}}{b^2} + ..... + {\,^n}{C_r}\,{a^{n - r}}{b^r} + ..... + {\,^n}{C_n}\,{b^n}\]-------(1)
If, \[\left| x \right| < 1\] then the binomial expansion is can be written as sum of an infinite series
\[ \Rightarrow \,\,{\left( {1 + x} \right)^{ - n}} = \,1 + \dfrac{{ - n}}{1} \cdot {x^1} + \dfrac{{\left( { - n} \right)\left( { - n - 1} \right)}}{{1 \times 2}} \cdot {x^2} + \dfrac{{\left( { - n} \right)\left( { - n - 1} \right)\left( { - n - 2} \right)}}{{1 \times 2 \times 3}} \cdot {x^3} + ..... + \dfrac{{\left( { - n} \right)\left( { - n - 1} \right)\left( { - n - 2} \right)...\left( { - n - r + 1} \right)}}{{1 \times 2 \times ... \times r}} \cdot {x^r} + .....\infty \]
On simplification, we can written as
\[ \Rightarrow \,\,{\left( {1 + x} \right)^{ - n}} = \,1 - nx + \dfrac{{n\left( {n + 1} \right)}}{{2!}} \cdot {x^2} - \dfrac{{n\left( {n + 1} \right)\left( {n + 2} \right)}}{{3!}} \cdot {x^3} + ..... + {\left( { - 1} \right)^r}\dfrac{{n\left( {n + 1} \right)\left( {n + 2} \right)...\left( {n + r - 1} \right)}}{{r!}} \cdot {x^r} + .....\infty \]
-------(2)
The binomial expansion for \[{\left( {1 - x} \right)^{ - n}}\] is given by
\[ \Rightarrow \,\,{\left( {1 - x} \right)^{ - n}} = \,1 + nx + \dfrac{{n\left( {n + 1} \right)}}{{2!}} \cdot {x^2} + \dfrac{{n\left( {n + 1} \right)\left( {n + 2} \right)}}{{3!}} \cdot {x^3} + ..... + {\left( { - 1} \right)^r}\dfrac{{n\left( {n + 1} \right)\left( {n + 2} \right)...\left( {n + r - 1} \right)}}{{r!}} \cdot {x^r} + .....\infty \]
-------(3)
Consider the question: Given 4 binomial expression, we have to expand each expression up to first four terms:
(i) \[{\left( {1 + x} \right)^{ - 4}}\]
Now by using a expansion i.e., equation (2)
\[n = 4\]
On substituting, we have
\[ \Rightarrow \,\,{\left( {1 + x} \right)^{ - 4}} = \,1 - 4x + \dfrac{{4\left( {4 + 1} \right)}}{{2!}} \cdot {x^2} - \dfrac{{4\left( {4 + 1} \right)\left( {4 + 2} \right)}}{{3!}} \cdot {x^3} + .....\]
\[ \Rightarrow \,\,{\left( {1 + x} \right)^{ - 4}} = \,1 - 4x + \dfrac{{4\left( 5 \right)}}{2} \cdot {x^2} - \dfrac{{4\left( 5 \right)\left( 6 \right)}}{6} \cdot {x^3} + .....\]
\[ \Rightarrow \,\,{\left( {1 + x} \right)^{ - 4}} = \,1 - 4x + \dfrac{{20}}{2} \cdot {x^2} - \dfrac{{120}}{6} \cdot {x^3} + .....\]
The first four terms of binomial \[{\left( {1 + x} \right)^{ - 4}}\] is
\[\therefore \,\,{\left( {1 + x} \right)^{ - 4}} = \,1 - 4x + 10{x^2} - 20{x^3} + .....\].
(ii) \[{\left( {1 - x} \right)^{ - \dfrac{1}{3}}}\]
Now by using a expansion i.e., equation (3)
\[n = \dfrac{1}{3}\]
On substituting, we have
\[ \Rightarrow \,\,{\left( {1 - x} \right)^{ - \dfrac{1}{3}}} = \,1 + \dfrac{1}{3}x + \dfrac{{\dfrac{1}{3}\left( {\dfrac{1}{3} + 1} \right)}}{{2!}} \cdot {x^2} + \dfrac{{\dfrac{1}{3}\left( {\dfrac{1}{3} + 1} \right)\left( {\dfrac{1}{3} + 2} \right)}}{{3!}} \cdot {x^3} + .....\]
\[ \Rightarrow \,\,{\left( {1 - x} \right)^{ - \dfrac{1}{3}}} = \,1 + \dfrac{x}{3} + \dfrac{{\dfrac{1}{3}\left( {\dfrac{4}{3}} \right)}}{2} \cdot {x^2} + \dfrac{{\dfrac{1}{3}\left( {\dfrac{4}{3}} \right)\left( {\dfrac{7}{3}} \right)}}{6} \cdot {x^3} + .....\]
\[ \Rightarrow \,\,{\left( {1 - x} \right)^{ - \dfrac{1}{3}}} = \,1 + \dfrac{x}{3} + \dfrac{4}{{18}} \cdot {x^2} + \dfrac{{28}}{{162}} \cdot {x^3} + .....\]
The first four terms of binomial \[{\left( {1 - x} \right)^{ - \dfrac{1}{3}}}\] is
\[\therefore \,\,{\left( {1 - x} \right)^{ - \dfrac{1}{3}}} = \,1 + \dfrac{x}{3} + \dfrac{{2{x^2}}}{9} + \dfrac{{14{x^3}}}{{81}} + .....\].
(iii) \[{\left( {1 - {x^2}} \right)^{ - 3}}\]
Now by using a expansion i.e., equation (3)
\[n = 3\]
On substituting, we have
\[ \Rightarrow \,\,{\left( {1 - {x^2}} \right)^{ - 3}} = \,1 + 3.{x^2} + \dfrac{{3\left( {3 + 1} \right)}}{{2!}} \cdot {x^4} + \dfrac{{3\left( {3 + 1} \right)\left( {3 + 2} \right)}}{{3!}} \cdot {x^6} + .....\]
\[ \Rightarrow \,\,{\left( {1 - {x^2}} \right)^{ - 3}} = \,1 + 3{x^2} + \dfrac{{3\left( 4 \right)}}{2} \cdot {x^4} + \dfrac{{3\left( 4 \right)\left( 7 \right)}}{6} \cdot {x^6} + .....\]
\[ \Rightarrow \,\,{\left( {1 - {x^2}} \right)^{ - 3}} = \,1 + 3{x^2} + \dfrac{{12}}{2} \cdot {x^4} + \dfrac{{84}}{6} \cdot {x^6} + .....\]
The first four terms of binomial \[{\left( {1 - {x^2}} \right)^{ - 3}}\] is
\[\therefore \,\,{\left( {1 - {x^2}} \right)^{ - 3}} = \,1 + 3{x^2} + 6{x^4} + 14{x^6} + .....\]
(iv) \[{\left( {1 + x} \right)^{ - \dfrac{1}{5}}}\]
Now by using a expansion i.e., equation (2)
\[n = - \dfrac{1}{5}\]
On substituting, we have
\[ \Rightarrow \,\,{\left( {1 + x} \right)^{ - \dfrac{1}{5}}} = \,1 - \dfrac{1}{5}x + \dfrac{{\dfrac{1}{5}\left( {\dfrac{1}{5} + 1} \right)}}{{2!}} \cdot {x^2} - \dfrac{{\dfrac{1}{5}\left( {\dfrac{1}{5} + 1} \right)\left( {\dfrac{1}{5} + 2} \right)}}{{3!}} \cdot {x^3} + .....\]
\[ \Rightarrow \,\,{\left( {1 + x} \right)^{ - \dfrac{1}{5}}} = \,1 - \dfrac{x}{5} + \dfrac{{\dfrac{1}{5}\left( {\dfrac{6}{5}} \right)}}{2} \cdot {x^2} - \dfrac{{\dfrac{1}{5}\left( {\dfrac{6}{5}} \right)\left( {\dfrac{{11}}{5}} \right)}}{6} \cdot {x^3} + .....\]
\[ \Rightarrow \,\,{\left( {1 + x} \right)^{ - \dfrac{1}{5}}} = \,1 - \dfrac{x}{5} + \dfrac{6}{{50}} \cdot {x^2} - \dfrac{{66}}{{750}} \cdot {x^3} + .....\]
The first four terms of binomial \[{\left( {1 + x} \right)^{ - 4}}\] is
\[\therefore \,\,{\left( {1 + x} \right)^{ - \dfrac{1}{5}}} = \,1 - \dfrac{x}{5} + \dfrac{3}{{25}}{x^2} - \dfrac{6}{{125}}{x^3} + .....\].
Note: The four major binomial expansion is given as
\[{\left( {1 + x} \right)^n} = \,1 + nx + \dfrac{{n\left( {n + 1} \right)}}{{2!}} \cdot {x^2} + \dfrac{{n\left( {n + 1} \right)\left( {n + 2} \right)}}{{3!}} \cdot {x^3} + ..... + {\left( { - 1} \right)^r}\dfrac{{n\left( {n + 1} \right)\left( {n + 2} \right)...\left( {n + r - 1} \right)}}{{r!}} \cdot {x^r} + .....\infty \]
\[\Rightarrow {\left( {1 + x} \right)^{ - n}} = \,1 - nx + \dfrac{{n\left( {n + 1} \right)}}{{2!}} \cdot {x^2} - \dfrac{{n\left( {n + 1} \right)\left( {n + 2} \right)}}{{3!}} \cdot {x^3} + ..... + {\left( { - 1} \right)^r}\dfrac{{n\left( {n + 1} \right)\left( {n + 2} \right)...\left( {n + r - 1} \right)}}{{r!}} \cdot {x^r} + .....\infty \]
\[\Rightarrow {\left( {1 - x} \right)^n} = \,1 - nx + \dfrac{{n\left( {n + 1} \right)}}{{2!}} \cdot {x^2} - \dfrac{{n\left( {n + 1} \right)\left( {n + 2} \right)}}{{3!}} \cdot {x^3} + ..... + {\left( { - 1} \right)^r}\dfrac{{n\left( {n + 1} \right)\left( {n + 2} \right)...\left( {n + r - 1} \right)}}{{r!}} \cdot {x^r} + .....\infty \]
\[\Rightarrow {\left( {1 - x} \right)^{ - n}} = \,1 + nx + \dfrac{{n\left( {n + 1} \right)}}{{2!}} \cdot {x^2} + \dfrac{{n\left( {n + 1} \right)\left( {n + 2} \right)}}{{3!}} \cdot {x^3} + ..... + {\left( { - 1} \right)^r}\dfrac{{n\left( {n + 1} \right)\left( {n + 2} \right)...\left( {n + r - 1} \right)}}{{r!}} \cdot {x^r} + .....\infty \]
Using these expansions, any kind of problem can be solved. The value of $x$ will depend on the question.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

What is periodicity class 11 chemistry CBSE

Explain zero factorial class 11 maths CBSE

What is a periderm How does periderm formation take class 11 biology CBSE

Mention the basic forces in nature class 11 physics CBSE

