
What is the standard enthalpy of the reaction $ CO + {H_2}O \to C{O_2} + {H_2} $ ?
Answer
515.4k+ views
Hint: The measure of energy in a thermodynamic process is enthalpy. The overall content of heat in a system is enthalpy, which is proportional to the system's internal energy along with the product of volume and pressure.
Complete answer:
We need to look up the standard enthalpy values for each material in the reaction to solve for the standard enthalpy.
The standard enthalpy value of $ CO $ is $ - 110.5kJ{\left( {mol} \right)^{ - 1}} $
The standard enthalpy value of $ {H_2}O $ is $ - 241.826kJ{\left( {mol} \right)^{ - 1}} $
The standard enthalpy value of $ C{O_2} $ is $ - 393.5kJ{\left( {mol} \right)^{ - 1}} $
The standard enthalpy value of $ {H_2} $ is $ 0kJ{\left( {mol} \right)^{ - 1}} $
Once we have obtained these numbers, put them into the standard enthalpy formation equation and solve for the standard enthalpy.
$ \Delta {H_{reaction}} = \Delta {H_{products}} - \Delta {H_{reac\tan ts}} $
To find the standard enthalpy value of the products, we have to add the standard enthalpy value of $ C{O_2} $ and the standard enthalpy value of $ {H_2} $
$ \Delta {H_{products}} = \Delta {H_{C{O_2}}} + \Delta {H_{{H_2}}} $
To find the standard enthalpy value of the reactants, we have to add the standard enthalpy value of $ CO $ and the standard enthalpy value of $ {H_2}O $
$ \Delta {H_{reac\tan ts}} = \Delta {H_{CO}} + \Delta {H_{{H_2}O}} $
Now we can substitute the standard enthalpy value of the products and the standard enthalpy value of the reactants, to find the standard enthalpy of the reaction.
$ \Delta {H_{reaction}} = \Delta {H_{products}} - \Delta {H_{reac\tan ts}} $
On substituting the values, we get,
$
\Delta {H_{reaction}} = \left[ {\left( { - 393.5kJ{{\left( {mol} \right)}^{ - 1}} \times 1molC{O_2}} \right) + \left( {0kJ{{\left( {mol} \right)}^{ - 1}} \times 1mol{H_2}} \right)} \right] - \\
\left[ {\left( { - 110.5kJ{{\left( {mol} \right)}^{ - 1}} \times 1molCO} \right) + \left( { - 241.826kJ{{\left( {mol} \right)}^{ - 1}} \times 1mol{H_2}O} \right)} \right] \\
$
$ \Rightarrow \Delta {H_{reaction}} = \left[ {\left( { - 393.5kJ} \right) + \left( {0kJ} \right)} \right] - \left[ {\left( { - 110.5kJ} \right) + \left( { - 241.826kJ} \right)} \right] $
$ \Rightarrow \Delta {H_{reaction}} = - 41.174kJ $
Therefore, the standard enthalpy of the reaction $ CO + {H_2}O \to C{O_2} + {H_2} $ is equal to $ - 41.174kJ $ .
Note:
The enthalpy of a system is influenced by a number of factors. Enthalpy is a broad concept that is influenced by the amount of material we deal with. The enthalpy value of a system is influenced by the state of reactants and materials (solid, liquid, or gas). The enthalpy value is affected by the reaction's path.
Complete answer:
We need to look up the standard enthalpy values for each material in the reaction to solve for the standard enthalpy.
The standard enthalpy value of $ CO $ is $ - 110.5kJ{\left( {mol} \right)^{ - 1}} $
The standard enthalpy value of $ {H_2}O $ is $ - 241.826kJ{\left( {mol} \right)^{ - 1}} $
The standard enthalpy value of $ C{O_2} $ is $ - 393.5kJ{\left( {mol} \right)^{ - 1}} $
The standard enthalpy value of $ {H_2} $ is $ 0kJ{\left( {mol} \right)^{ - 1}} $
Once we have obtained these numbers, put them into the standard enthalpy formation equation and solve for the standard enthalpy.
$ \Delta {H_{reaction}} = \Delta {H_{products}} - \Delta {H_{reac\tan ts}} $
To find the standard enthalpy value of the products, we have to add the standard enthalpy value of $ C{O_2} $ and the standard enthalpy value of $ {H_2} $
$ \Delta {H_{products}} = \Delta {H_{C{O_2}}} + \Delta {H_{{H_2}}} $
To find the standard enthalpy value of the reactants, we have to add the standard enthalpy value of $ CO $ and the standard enthalpy value of $ {H_2}O $
$ \Delta {H_{reac\tan ts}} = \Delta {H_{CO}} + \Delta {H_{{H_2}O}} $
Now we can substitute the standard enthalpy value of the products and the standard enthalpy value of the reactants, to find the standard enthalpy of the reaction.
$ \Delta {H_{reaction}} = \Delta {H_{products}} - \Delta {H_{reac\tan ts}} $
On substituting the values, we get,
$
\Delta {H_{reaction}} = \left[ {\left( { - 393.5kJ{{\left( {mol} \right)}^{ - 1}} \times 1molC{O_2}} \right) + \left( {0kJ{{\left( {mol} \right)}^{ - 1}} \times 1mol{H_2}} \right)} \right] - \\
\left[ {\left( { - 110.5kJ{{\left( {mol} \right)}^{ - 1}} \times 1molCO} \right) + \left( { - 241.826kJ{{\left( {mol} \right)}^{ - 1}} \times 1mol{H_2}O} \right)} \right] \\
$
$ \Rightarrow \Delta {H_{reaction}} = \left[ {\left( { - 393.5kJ} \right) + \left( {0kJ} \right)} \right] - \left[ {\left( { - 110.5kJ} \right) + \left( { - 241.826kJ} \right)} \right] $
$ \Rightarrow \Delta {H_{reaction}} = - 41.174kJ $
Therefore, the standard enthalpy of the reaction $ CO + {H_2}O \to C{O_2} + {H_2} $ is equal to $ - 41.174kJ $ .
Note:
The enthalpy of a system is influenced by a number of factors. Enthalpy is a broad concept that is influenced by the amount of material we deal with. The enthalpy value of a system is influenced by the state of reactants and materials (solid, liquid, or gas). The enthalpy value is affected by the reaction's path.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Explain zero factorial class 11 maths CBSE

What organs are located on the left side of your body class 11 biology CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

How do I convert ms to kmh Give an example class 11 physics CBSE

