
What is the square root of $8$ in the radical form ?
Answer
506.4k+ views
Hint: We can see this problem is from indices and powers. In the given problem, we have to evaluate and simplify the square root of $8$ in the simplest radical form possible. We know that the square root of a number can be interpreted as the number being raised to the power $\left( {\dfrac{1}{2}} \right)$. So, we have, $8$ as the base and $\left( {\dfrac{1}{2}} \right)$ as the power. But we have to simplify this into radical form.
Complete step by step solution:
We have, $\sqrt 8 $
Expressing in simplest radical form is nothing but simplifying the radical into the simplest form with as few square roots, cube roots, etc as possible. left to find. In other words, a number under a radical is indivisible by a perfect square other than $1$.
So, we first factorize the number $8$ into its prime factors using the prime factorization method.
So, we get, $8 = 2 \times 2 \times 2$
Now, $\sqrt 8 = \sqrt {2 \times 2 \times 2} $
So, we can write $8$ as ${2^3}$.
Hence, we get, $\sqrt 8 = \sqrt {{2^3}} $
This is of the form ${a^{\left( {\dfrac{m}{n}} \right)}}$. But we can rewrite the expression using the laws of indices and powers ${a^{\left( {\dfrac{m}{n}} \right)}} = {\left( {{a^m}} \right)^{\dfrac{1}{n}}}$ .
Thus, we will apply same on the question above, we get,
$ \Rightarrow \sqrt 8 = \sqrt {{2^3}} = {2^{\dfrac{3}{2}}}$
Now, we can write ${2^{\dfrac{3}{2}}}$ as ${2^{\left( {1 + \dfrac{1}{2}} \right)}}$.
$ \Rightarrow \sqrt 8 = {2^{\left( {1 + \dfrac{1}{2}} \right)}}$
Also, we know the property ${a^{m + n}} = {a^m}{a^n}$. So, we get, ${2^{\left( {1 + \dfrac{1}{2}} \right)}} = {2^1} \times {2^{\dfrac{1}{2}}}$.
Now, we get,
$ \Rightarrow \sqrt 8 = \left( {{2^1}} \right)\left( {{2^{\dfrac{1}{2}}}} \right)$
Since we know that ${a^{\dfrac{1}{2}}} = \sqrt a $.
Hence, simplifying further, we get,
$ \Rightarrow \sqrt 8 = 2\sqrt 2 $
Therefore, the square root of $8$ in the radical form is $2\sqrt 2 $.
Note:
These rules or laws of indices help us to minimize the problems and get the answer in very less time. These powers can be positive and negative but can be molded according to our convenience while solving the problem. Also note that cube-root, square-root can be represented as powers with fractions having $1$ as numerator and respective root in denominator.
Complete step by step solution:
We have, $\sqrt 8 $
Expressing in simplest radical form is nothing but simplifying the radical into the simplest form with as few square roots, cube roots, etc as possible. left to find. In other words, a number under a radical is indivisible by a perfect square other than $1$.
So, we first factorize the number $8$ into its prime factors using the prime factorization method.
So, we get, $8 = 2 \times 2 \times 2$
Now, $\sqrt 8 = \sqrt {2 \times 2 \times 2} $
So, we can write $8$ as ${2^3}$.
Hence, we get, $\sqrt 8 = \sqrt {{2^3}} $
This is of the form ${a^{\left( {\dfrac{m}{n}} \right)}}$. But we can rewrite the expression using the laws of indices and powers ${a^{\left( {\dfrac{m}{n}} \right)}} = {\left( {{a^m}} \right)^{\dfrac{1}{n}}}$ .
Thus, we will apply same on the question above, we get,
$ \Rightarrow \sqrt 8 = \sqrt {{2^3}} = {2^{\dfrac{3}{2}}}$
Now, we can write ${2^{\dfrac{3}{2}}}$ as ${2^{\left( {1 + \dfrac{1}{2}} \right)}}$.
$ \Rightarrow \sqrt 8 = {2^{\left( {1 + \dfrac{1}{2}} \right)}}$
Also, we know the property ${a^{m + n}} = {a^m}{a^n}$. So, we get, ${2^{\left( {1 + \dfrac{1}{2}} \right)}} = {2^1} \times {2^{\dfrac{1}{2}}}$.
Now, we get,
$ \Rightarrow \sqrt 8 = \left( {{2^1}} \right)\left( {{2^{\dfrac{1}{2}}}} \right)$
Since we know that ${a^{\dfrac{1}{2}}} = \sqrt a $.
Hence, simplifying further, we get,
$ \Rightarrow \sqrt 8 = 2\sqrt 2 $
Therefore, the square root of $8$ in the radical form is $2\sqrt 2 $.
Note:
These rules or laws of indices help us to minimize the problems and get the answer in very less time. These powers can be positive and negative but can be molded according to our convenience while solving the problem. Also note that cube-root, square-root can be represented as powers with fractions having $1$ as numerator and respective root in denominator.
Recently Updated Pages
Master Class 8 Social Science: Engaging Questions & Answers for Success

Master Class 8 Maths: Engaging Questions & Answers for Success

Master Class 8 Science: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 8 English: Engaging Questions & Answers for Success

Why are manures considered better than fertilizers class 11 biology CBSE

Trending doubts
What is BLO What is the full form of BLO class 8 social science CBSE

Citizens of India can vote at the age of A 18 years class 8 social science CBSE

Full form of STD, ISD and PCO

Right to vote is a AFundamental Right BFundamental class 8 social science CBSE

What is the difference between rai and mustard see class 8 biology CBSE

Summary of the poem Where the Mind is Without Fear class 8 english CBSE


