
What is the spring constant in parallel connection and series connection?
Answer
419.1k+ views
Hint: Two massless springs that follow Hooke's Law are said to be connected in parallel when they are connected by a thin, vertical rod, as shown in the diagram below. The formula for capacitors connected in parallel in an electrical circuit can be used to find the value of k.
Complete answer:
For parallel:
Two massless springs that follow Hooke's Law are said to be connected in parallel when they are connected by a thin, vertical rod.
$k_{1}$ and $k_{2}$ are the spring constants for springs 1 and 2. The rod is subjected to a constant force $F$, which keeps it perpendicular to the force's direction. In order for the springs to be the same length. The springs could also be compressed if the force was reversed.
A single Hookean spring of spring constant $k$ is equivalent to this system of two parallel springs. The formula for parallel capacitors in an electrical circuit can be used to calculate the value of $k$.
$k=k_{1}+k_{2}$
For Series
Here the equivalent spring constant would be,
$k=\dfrac{{{k}_{1}}{{k}_{2}}}{{{k}_{1}}+{{k}_{2}}}$
When the same springs are connected in series, as shown in the diagram below, this is referred to as a series connection. On spring 2, a constant force F is applied. As a result, the springs are elongated, and the total extension of the combination equals the sum of each spring's elongation. Alternatively, the springs could be compressed by reversing the force direction.
A single spring of spring constant k is equivalent to this system of two springs in series. The formula for capacitors connected in series in an electrical circuit can be used to calculate the value of k.
Note: When two or more springs are connected end-to-end or point-to-point in mechanics, they are said to be in series, and when they are connected side-by-side, they are said to be in parallel; in both cases, they act as a single spring.
Complete answer:
For parallel:

Two massless springs that follow Hooke's Law are said to be connected in parallel when they are connected by a thin, vertical rod.
$k_{1}$ and $k_{2}$ are the spring constants for springs 1 and 2. The rod is subjected to a constant force $F$, which keeps it perpendicular to the force's direction. In order for the springs to be the same length. The springs could also be compressed if the force was reversed.
A single Hookean spring of spring constant $k$ is equivalent to this system of two parallel springs. The formula for parallel capacitors in an electrical circuit can be used to calculate the value of $k$.
$k=k_{1}+k_{2}$
For Series

Here the equivalent spring constant would be,
$k=\dfrac{{{k}_{1}}{{k}_{2}}}{{{k}_{1}}+{{k}_{2}}}$
When the same springs are connected in series, as shown in the diagram below, this is referred to as a series connection. On spring 2, a constant force F is applied. As a result, the springs are elongated, and the total extension of the combination equals the sum of each spring's elongation. Alternatively, the springs could be compressed by reversing the force direction.
A single spring of spring constant k is equivalent to this system of two springs in series. The formula for capacitors connected in series in an electrical circuit can be used to calculate the value of k.
Note: When two or more springs are connected end-to-end or point-to-point in mechanics, they are said to be in series, and when they are connected side-by-side, they are said to be in parallel; in both cases, they act as a single spring.
Recently Updated Pages
How do you write 54000 in standard notation class 6 maths CBSE

In traditional India social status was based on A Wealth class 6 social science CBSE

Which of the following is the main constituent gas class 6 social science CBSE

How do you evaluate dfrac993 times 6 times 8left 9 class 6 maths CBSE

Is the following statement true or false The future class 6 english CBSE

In the given figures the mirror ie the line of symmetry class 6 maths CBSE

Trending doubts
Is Cellular respiration an Oxidation or Reduction class 11 chemistry CBSE

In electron dot structure the valence shell electrons class 11 chemistry CBSE

What is the Pitti Island famous for ABird Sanctuary class 11 social science CBSE

State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE
