
Spin angular momentum for electron is given by:
A) $\sqrt {S\left( {S + 1} \right)} \dfrac{h}{{2\pi }}$
B) $\sqrt {2S\left( {S + 1} \right)} \dfrac{h}{{2\pi }}$
C) $\sqrt {S\left( {S + 2} \right)} \dfrac{h}{{2\pi }}$
D) None
Answer
553.2k+ views
Hint: The spin of an electron is a dimensionless quantity. The spin of an electron is described as the spin quantum number. All the particles that are moving in three directions possess integer spin or half integer spin.
Complete step by step answer:We know that spin of an electron is an intrinsic form of angular momentum carried by elementary particles. The spin of an electron is not associated with rotating internal parts of the elementary particles.
We know that an electron is believed to be a point particle that possesses no internal structure but still the electron possesses spin. A spin quantum number is assigned to the elementary particles that have the same spin angular momentum.
The direction of the spin of the electron can be changed but the electron cannot be made to spin faster or slower.
We know that the spin quantum number $\left( S \right)$ describes the angular momentum of an electron. An electron spins around an axis and possesses both angular momentum and orbital angular momentum. Thus, the spin quantum number has both direction $\left( { + {\text{ or }} - } \right)$ and magnitude $\left( {{\text{1/2}}} \right)$.
According to the definition of spin quantum number,
$S = \dfrac{n}{2}$
Where $S$ is the spin quantum number,
$n$ is the non-negative integer value.
Thus, the allowed values of spin are $0,\dfrac{1}{2},1,\dfrac{3}{2},......$Thus, the spin is quantised and has only discrete values.
The spin angular momentum of an electron is given as,
$S = h\sqrt {S\left( {S + 1} \right)} $
But $h = \dfrac{h}{{2\pi }}$. Thus,
$S = \dfrac{h}{{2\pi }}\sqrt {S\left( {S + 1} \right)} $
Thus, spin angular momentum for the electron is given by $\sqrt {S\left( {S + 1} \right)} \dfrac{h}{{2\pi }}$.
Thus, the correct option is (A) $\sqrt {S\left( {S + 1} \right)} \dfrac{h}{{2\pi }}$.
Note: The spin angular momentum of an electron can also be represented as $S = \dfrac{h}{{2\pi }}\sqrt {n\left( {n + 2} \right)} $. A particle having $S = \dfrac{h}{2}$ deflects upwards and a particle having $S = - \dfrac{h}{2}$ deflects downwards. The deflection in the upward and the downward direction is the same.
Complete step by step answer:We know that spin of an electron is an intrinsic form of angular momentum carried by elementary particles. The spin of an electron is not associated with rotating internal parts of the elementary particles.
We know that an electron is believed to be a point particle that possesses no internal structure but still the electron possesses spin. A spin quantum number is assigned to the elementary particles that have the same spin angular momentum.
The direction of the spin of the electron can be changed but the electron cannot be made to spin faster or slower.
We know that the spin quantum number $\left( S \right)$ describes the angular momentum of an electron. An electron spins around an axis and possesses both angular momentum and orbital angular momentum. Thus, the spin quantum number has both direction $\left( { + {\text{ or }} - } \right)$ and magnitude $\left( {{\text{1/2}}} \right)$.
According to the definition of spin quantum number,
$S = \dfrac{n}{2}$
Where $S$ is the spin quantum number,
$n$ is the non-negative integer value.
Thus, the allowed values of spin are $0,\dfrac{1}{2},1,\dfrac{3}{2},......$Thus, the spin is quantised and has only discrete values.
The spin angular momentum of an electron is given as,
$S = h\sqrt {S\left( {S + 1} \right)} $
But $h = \dfrac{h}{{2\pi }}$. Thus,
$S = \dfrac{h}{{2\pi }}\sqrt {S\left( {S + 1} \right)} $
Thus, spin angular momentum for the electron is given by $\sqrt {S\left( {S + 1} \right)} \dfrac{h}{{2\pi }}$.
Thus, the correct option is (A) $\sqrt {S\left( {S + 1} \right)} \dfrac{h}{{2\pi }}$.
Note: The spin angular momentum of an electron can also be represented as $S = \dfrac{h}{{2\pi }}\sqrt {n\left( {n + 2} \right)} $. A particle having $S = \dfrac{h}{2}$ deflects upwards and a particle having $S = - \dfrac{h}{2}$ deflects downwards. The deflection in the upward and the downward direction is the same.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

