
How do you solve ${x^2} + 10x = 4$ by completing the square?
Answer
541.8k+ views
Hint: Here we have a polynomial, it is desirable to express in the form of ${a^2} + {b^2}$ , to do this, we can artificially introduce a constant which allows us to factor a perfect square out of the expression. Notice that by simultaneously adding and subtracting, we have not changed the value of the expression.
Complete step by step answer:
An expression like ${x^2} + 10x = 4$ may be thought of as an “incomplete” square. To make it complete, we would need to add ${n^2}$ to the expression. We can figure out what to use for $n$ by realizing that the $10x$ in the middle need to be $2nx$. So we want $n = 5$ and ${n^2} = 25$.
Of course we can just add a number to an expression without changing the value of the expression. So if we want to keep the same value we will have to make up for adding $25$. We do this by also subtracting $25$. That does not change the value of ${x^2} + 10x$ , but it does change the way it is written.
We write ${x^2} + 10x + 25 - 25 = 4$. If we grouping this way,
$ \Rightarrow \left( {{x^2} + 10x + 25} \right) - 25 = 4$
Then we have a perfect square minus $25$
And we write,
$ \Rightarrow {\left( {x + 5} \right)^2} - 25 = 4$
Solving an equation by completing square,
$ \Rightarrow {\left( {x + 5} \right)^2} - 25 = 4$
Adding$25$in both sides of the equation, it becomes
$ \Rightarrow {\left( {x + 5} \right)^2} - 25 + 25 = 4 + 25$
On addition,
$ \Rightarrow {\left( {x + 5} \right)^2} + 0 = 29$
Adding zero,
$ \Rightarrow {\left( {x + 5} \right)^2} = 29$
Taking square on both sides of the above equation, we get,
$ \Rightarrow \sqrt {{{\left( {x + 5} \right)}^2}} = \sqrt {29} $
$ \Rightarrow \left( {x + 5} \right) = \pm \sqrt {29} $
And the last equation above is satisfied exactly when
$x + 5 = \sqrt {29} $ or $x + 5 = - \sqrt {29} $
So, $x = - 5 + \sqrt {29} $ or $x = - \left( {5 + \sqrt {29} } \right)$
Then the solution of the given equation is $\left\{ { - 5 + \sqrt {29} , - \left( {5 + \sqrt {29} } \right)} \right\}$.
Note: we can also find the solution of the given quadratic equation by using the formula $x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$ . By this formula we can easily get the solution involving with simple steps.
Given equation is ${x^2} + 10x = 4$, reordering the term ${x^2} + 10x - 4 = 0$,
Consider$a = 1$ , $b = 10$ and $c = - 4$, substitute this value into the formula,
$x = \dfrac{{ - 10 \pm \sqrt {100 + 16} }}{2}$
On simplified,
$ \Rightarrow x = \dfrac{{ - 10 \pm \sqrt {116} }}{2}$
We just factorized root term,
$ \Rightarrow x = \dfrac{{ - 10 \pm \sqrt {4 \times 29} }}{2}$
Simplified the root term
$ \Rightarrow x = \dfrac{{ - 10 \pm 2\sqrt {29} }}{2}$
Taking common $'2'$
$ x = \dfrac{{2( - 5 \pm \sqrt {29} )}}{2}$
We cancel the common term, we get
$ \Rightarrow x = - 5 \pm \sqrt {29} $
Finally we get the solution of the equation.
Complete step by step answer:
An expression like ${x^2} + 10x = 4$ may be thought of as an “incomplete” square. To make it complete, we would need to add ${n^2}$ to the expression. We can figure out what to use for $n$ by realizing that the $10x$ in the middle need to be $2nx$. So we want $n = 5$ and ${n^2} = 25$.
Of course we can just add a number to an expression without changing the value of the expression. So if we want to keep the same value we will have to make up for adding $25$. We do this by also subtracting $25$. That does not change the value of ${x^2} + 10x$ , but it does change the way it is written.
We write ${x^2} + 10x + 25 - 25 = 4$. If we grouping this way,
$ \Rightarrow \left( {{x^2} + 10x + 25} \right) - 25 = 4$
Then we have a perfect square minus $25$
And we write,
$ \Rightarrow {\left( {x + 5} \right)^2} - 25 = 4$
Solving an equation by completing square,
$ \Rightarrow {\left( {x + 5} \right)^2} - 25 = 4$
Adding$25$in both sides of the equation, it becomes
$ \Rightarrow {\left( {x + 5} \right)^2} - 25 + 25 = 4 + 25$
On addition,
$ \Rightarrow {\left( {x + 5} \right)^2} + 0 = 29$
Adding zero,
$ \Rightarrow {\left( {x + 5} \right)^2} = 29$
Taking square on both sides of the above equation, we get,
$ \Rightarrow \sqrt {{{\left( {x + 5} \right)}^2}} = \sqrt {29} $
$ \Rightarrow \left( {x + 5} \right) = \pm \sqrt {29} $
And the last equation above is satisfied exactly when
$x + 5 = \sqrt {29} $ or $x + 5 = - \sqrt {29} $
So, $x = - 5 + \sqrt {29} $ or $x = - \left( {5 + \sqrt {29} } \right)$
Then the solution of the given equation is $\left\{ { - 5 + \sqrt {29} , - \left( {5 + \sqrt {29} } \right)} \right\}$.
Note: we can also find the solution of the given quadratic equation by using the formula $x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$ . By this formula we can easily get the solution involving with simple steps.
Given equation is ${x^2} + 10x = 4$, reordering the term ${x^2} + 10x - 4 = 0$,
Consider$a = 1$ , $b = 10$ and $c = - 4$, substitute this value into the formula,
$x = \dfrac{{ - 10 \pm \sqrt {100 + 16} }}{2}$
On simplified,
$ \Rightarrow x = \dfrac{{ - 10 \pm \sqrt {116} }}{2}$
We just factorized root term,
$ \Rightarrow x = \dfrac{{ - 10 \pm \sqrt {4 \times 29} }}{2}$
Simplified the root term
$ \Rightarrow x = \dfrac{{ - 10 \pm 2\sqrt {29} }}{2}$
Taking common $'2'$
$ x = \dfrac{{2( - 5 \pm \sqrt {29} )}}{2}$
We cancel the common term, we get
$ \Rightarrow x = - 5 \pm \sqrt {29} $
Finally we get the solution of the equation.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

