
Solve using the double angle understanding? $\cos 6x + \cos 4x + \cos 2x = 0$
Answer
474.6k+ views
Hint: here we are asked to solve the given equation which has trigonometric functions. Also, we are asked to use the double angle concept. As we can see that the given equation contains only cosine function we will use the double formula of cosine functions that is $\cos \left( {A + B} \right) = \cos A\cos B - \sin A\sin B$ and $\cos \left( {A - B} \right) = \cos A\cos B + \sin A\sin B$ by modulating the angle of these formulae some formulae are derived those formulae are used in the problem to solve the given equation.
Formula to be used:
a) $\cos a + \cos b = 2\cos \left( {\dfrac{{a + b}}{2}} \right)\cos \left( {\dfrac{{a - b}}{2}} \right)$
b) When $\cos x = \cos \theta $ then the general solution is given by $x = 2n\pi \pm \theta $ , where $\theta \in \left( {0,\pi } \right]$
Complete answer:
The given equation is $\cos 6x + \cos 4x + \cos 2x = 0$and we need to solve it (i.e. we need to calculate the solutions for the given trigonometric equation).
Let us number the given equation $\cos 6x + \cos 4x + \cos 2x = 0$as $\left( 1 \right)$
Let us consider $\cos 6x + \cos 2x$
Now, we shall apply the formula $\cos a + \cos b = 2\cos \left( {\dfrac{{a + b}}{2}} \right)\cos \left( {\dfrac{{a - b}}{2}} \right)$
Thus, we have $\cos 6x + \cos 2x$$ = 2\cos \left( {\dfrac{{6x + 2x}}{2}} \right)\cos \left( {\dfrac{{6x - 2x}}{2}} \right)$
$ = 2\cos \left( {\dfrac{{8x}}{2}} \right)\cos \left( {\dfrac{{4x}}{2}} \right)$
$ = 2\cos 4x\cos 2x$
Hence, we get $\cos 6x + \cos 2x$$ = 2\cos 4x\cos 2x$……….$\left( 2 \right)$
Now, we shall substitute the equation $\left( 2 \right)$in the equation $\left( 1 \right)$
Thus, we will get $\cos 6x + \cos 4x + \cos 2x = 0$
$ \Rightarrow \cos 4x + 2\cos 4x\cos 2x = 0$
$ \Rightarrow \cos 4x\left( {1 + 2\cos 2x} \right) = 0$
Hence in the above equation, we can note that either $\cos 4x = 0$ or $1 + 2\cos 2x = 0$ .
We shall consider both cases to find the solution.
Case a:
Let us consider $\cos 4x = 0$
$ \Rightarrow \cos 4x = \cos 90^\circ $ (We know that $\cos 90^\circ = 0$ )
$ \Rightarrow \cos 4x = \cos \dfrac{\pi }{2}$
$ \Rightarrow 4x = 2n\pi \pm \dfrac{\pi }{2}$ (Here we have applied $\cos x = \cos \theta $$ \Rightarrow x = 2n\pi \pm \theta $ , where $\theta \in \left( {0,\pi } \right]$)
$ \Rightarrow x = \dfrac{{2n\pi }}{4} \pm \dfrac{\pi }{{2 \times 4}}$
$ \Rightarrow x = \dfrac{{n\pi }}{2} \pm \dfrac{\pi }{8}$
Thus, we got the solution $x = \dfrac{{n\pi }}{2} \pm \dfrac{\pi }{8}$ when $\cos 4x = 0$for the given equation.
Case b:
Let us consider $1 + 2\cos 2x = 0$
$ \Rightarrow 2\cos 2x = - 1$
$ \Rightarrow \cos 2x = - \dfrac{1}{2}$
$ \Rightarrow \cos 2x = \cos 120^\circ $ (We know that $\cos 120^\circ = - \dfrac{1}{2}$ )
$ \Rightarrow \cos 2x = \cos \dfrac{{2\pi }}{3}$
$ \Rightarrow 2x = 2n\pi \pm \dfrac{{2\pi }}{3}$ (Here we have applied $\cos x = \cos \theta $$ \Rightarrow x = 2n\pi \pm \theta $ , where $\theta \in \left( {0,\pi } \right]$)
$ \Rightarrow x = \dfrac{{2n\pi }}{2} \pm \dfrac{{2\pi }}{{3 \times 2}}$
$ \Rightarrow x = n\pi \pm \dfrac{\pi }{3}$
Thus, we got the solution $x = n\pi \pm \dfrac{\pi }{3}$ when $1 + 2\cos 2x = 0$for the given equation.
Note:
Since we are asked to solve the given equation, we have calculated the appropriate solution of the given equation. Also, it is no need to have a single solution for an equation. An equation can contain more than one solution and even no solution can also exist. Here, we can have either $x = \dfrac{{n\pi }}{2} \pm \dfrac{\pi }{8}$or $x = n\pi \pm \dfrac{\pi }{3}$for the given equation.
Formula to be used:
a) $\cos a + \cos b = 2\cos \left( {\dfrac{{a + b}}{2}} \right)\cos \left( {\dfrac{{a - b}}{2}} \right)$
b) When $\cos x = \cos \theta $ then the general solution is given by $x = 2n\pi \pm \theta $ , where $\theta \in \left( {0,\pi } \right]$
Complete answer:
The given equation is $\cos 6x + \cos 4x + \cos 2x = 0$and we need to solve it (i.e. we need to calculate the solutions for the given trigonometric equation).
Let us number the given equation $\cos 6x + \cos 4x + \cos 2x = 0$as $\left( 1 \right)$
Let us consider $\cos 6x + \cos 2x$
Now, we shall apply the formula $\cos a + \cos b = 2\cos \left( {\dfrac{{a + b}}{2}} \right)\cos \left( {\dfrac{{a - b}}{2}} \right)$
Thus, we have $\cos 6x + \cos 2x$$ = 2\cos \left( {\dfrac{{6x + 2x}}{2}} \right)\cos \left( {\dfrac{{6x - 2x}}{2}} \right)$
$ = 2\cos \left( {\dfrac{{8x}}{2}} \right)\cos \left( {\dfrac{{4x}}{2}} \right)$
$ = 2\cos 4x\cos 2x$
Hence, we get $\cos 6x + \cos 2x$$ = 2\cos 4x\cos 2x$……….$\left( 2 \right)$
Now, we shall substitute the equation $\left( 2 \right)$in the equation $\left( 1 \right)$
Thus, we will get $\cos 6x + \cos 4x + \cos 2x = 0$
$ \Rightarrow \cos 4x + 2\cos 4x\cos 2x = 0$
$ \Rightarrow \cos 4x\left( {1 + 2\cos 2x} \right) = 0$
Hence in the above equation, we can note that either $\cos 4x = 0$ or $1 + 2\cos 2x = 0$ .
We shall consider both cases to find the solution.
Case a:
Let us consider $\cos 4x = 0$
$ \Rightarrow \cos 4x = \cos 90^\circ $ (We know that $\cos 90^\circ = 0$ )
$ \Rightarrow \cos 4x = \cos \dfrac{\pi }{2}$
$ \Rightarrow 4x = 2n\pi \pm \dfrac{\pi }{2}$ (Here we have applied $\cos x = \cos \theta $$ \Rightarrow x = 2n\pi \pm \theta $ , where $\theta \in \left( {0,\pi } \right]$)
$ \Rightarrow x = \dfrac{{2n\pi }}{4} \pm \dfrac{\pi }{{2 \times 4}}$
$ \Rightarrow x = \dfrac{{n\pi }}{2} \pm \dfrac{\pi }{8}$
Thus, we got the solution $x = \dfrac{{n\pi }}{2} \pm \dfrac{\pi }{8}$ when $\cos 4x = 0$for the given equation.
Case b:
Let us consider $1 + 2\cos 2x = 0$
$ \Rightarrow 2\cos 2x = - 1$
$ \Rightarrow \cos 2x = - \dfrac{1}{2}$
$ \Rightarrow \cos 2x = \cos 120^\circ $ (We know that $\cos 120^\circ = - \dfrac{1}{2}$ )
$ \Rightarrow \cos 2x = \cos \dfrac{{2\pi }}{3}$
$ \Rightarrow 2x = 2n\pi \pm \dfrac{{2\pi }}{3}$ (Here we have applied $\cos x = \cos \theta $$ \Rightarrow x = 2n\pi \pm \theta $ , where $\theta \in \left( {0,\pi } \right]$)
$ \Rightarrow x = \dfrac{{2n\pi }}{2} \pm \dfrac{{2\pi }}{{3 \times 2}}$
$ \Rightarrow x = n\pi \pm \dfrac{\pi }{3}$
Thus, we got the solution $x = n\pi \pm \dfrac{\pi }{3}$ when $1 + 2\cos 2x = 0$for the given equation.
Note:
Since we are asked to solve the given equation, we have calculated the appropriate solution of the given equation. Also, it is no need to have a single solution for an equation. An equation can contain more than one solution and even no solution can also exist. Here, we can have either $x = \dfrac{{n\pi }}{2} \pm \dfrac{\pi }{8}$or $x = n\pi \pm \dfrac{\pi }{3}$for the given equation.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Explain zero factorial class 11 maths CBSE

What organs are located on the left side of your body class 11 biology CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

How do I convert ms to kmh Give an example class 11 physics CBSE

