How do you solve this system of equations:
$2x + 3y = 8$ and $3x + 1y = 5$ ?
Answer
Verified
440.4k+ views
Hint: To solve such questions start by multiplying the second given equation with the number $3$ . Then subtract the first given equation from the other one which is multiplied by the number $3$ . Once the value of $x$ is found use that to find the value of $y$ .
Complete step by step answer:
Given the equations $2x + 3y = 8$ and $3x + 1y = 5$ .
It is asked to solve these equations.
Suppose that
$2x + 3y = 8......(1)$
And
$3x + 1y = 5......(2)$
Multiply both the LHS and RHS of the equation $\left( 2 \right)$ with the number $3$ , that is
$\left( {3x + 1y} \right) \times 3 = 5 \times 3$
Further computing we get,
$9x + 3y = 15......(3)$
Next, subtract the equation $\left( 1 \right)$ from the equation $\left( 3 \right)$ , that is
$2x + 3y = 8 -$
$9x + 3y = 15$
Further simplifying we get,
$- 7x = - 7$
Dividing throughout by number $- 7$ , we get
$\dfrac{{ - 7x}}{{ - 7}} = \dfrac{{ - 7}}{{ - 7}}$
That is we get
$x = 1$
Now substitute the value of $x$ in equation $\left( 2 \right)$ , that is
$3\left( 1 \right) + 1y = 5$
Further simplifying, we get
$3 + y = 5$
That is,
$y = 5 - 3$
Subtracting the RHS we get,
$y = 2$
Therefore, the solution of the given system of equations is $x = 1$ and $y = 2$ .
Additional information:
An equation that can be written in the form $ax + by + c = 0$ , where $a$ , $b$ and $c$ are real numbers, and $a$ and $b$ are not both zero, is known as a linear equation in two variables $x$ and $y$ . Every solution of the equation is a point on the line representing it.
Note: These types of questions are easy to solve. There are different methods to solve linear equations with two variables, that is, method of substitution and method of elimination. In this solution part, we have used a method of elimination. One can check whether the obtained values of $x$ and $y$ is correct or not by putting those in the given equations.
Complete step by step answer:
Given the equations $2x + 3y = 8$ and $3x + 1y = 5$ .
It is asked to solve these equations.
Suppose that
$2x + 3y = 8......(1)$
And
$3x + 1y = 5......(2)$
Multiply both the LHS and RHS of the equation $\left( 2 \right)$ with the number $3$ , that is
$\left( {3x + 1y} \right) \times 3 = 5 \times 3$
Further computing we get,
$9x + 3y = 15......(3)$
Next, subtract the equation $\left( 1 \right)$ from the equation $\left( 3 \right)$ , that is
$2x + 3y = 8 -$
$9x + 3y = 15$
Further simplifying we get,
$- 7x = - 7$
Dividing throughout by number $- 7$ , we get
$\dfrac{{ - 7x}}{{ - 7}} = \dfrac{{ - 7}}{{ - 7}}$
That is we get
$x = 1$
Now substitute the value of $x$ in equation $\left( 2 \right)$ , that is
$3\left( 1 \right) + 1y = 5$
Further simplifying, we get
$3 + y = 5$
That is,
$y = 5 - 3$
Subtracting the RHS we get,
$y = 2$
Therefore, the solution of the given system of equations is $x = 1$ and $y = 2$ .
Additional information:
An equation that can be written in the form $ax + by + c = 0$ , where $a$ , $b$ and $c$ are real numbers, and $a$ and $b$ are not both zero, is known as a linear equation in two variables $x$ and $y$ . Every solution of the equation is a point on the line representing it.
Note: These types of questions are easy to solve. There are different methods to solve linear equations with two variables, that is, method of substitution and method of elimination. In this solution part, we have used a method of elimination. One can check whether the obtained values of $x$ and $y$ is correct or not by putting those in the given equations.
Recently Updated Pages
If the perimeter of the equilateral triangle is 18-class-10-maths-CBSE
How do you make the plural form of most of the words class 10 english CBSE
Quotes and Slogans on Consumer Rights Can Anybody Give Me
What is the orbit of a satellite Find out the basis class 10 physics CBSE
the period from 1919 to 1947 forms an important phase class 10 social science CBSE
If the average marks of three batches of 55 60 and class 10 maths CBSE
Trending doubts
Assertion The planet Neptune appears blue in colour class 10 social science CBSE
The term disaster is derived from language AGreek BArabic class 10 social science CBSE
Imagine that you have the opportunity to interview class 10 english CBSE
Find the area of the minor segment of a circle of radius class 10 maths CBSE
Differentiate between natural and artificial ecosy class 10 biology CBSE
Fill the blanks with proper collective nouns 1 A of class 10 english CBSE