
Solve the trigonometric equation: - \[\sin \theta +\sin 5\theta =\sin 3\theta \].
Answer
582.3k+ views
Hint: Use the sum to product rule of conversion of trigonometric function given by: - \[\sin a+\sin b=2\sin \dfrac{a+b}{2}\cos \dfrac{a-b}{2}\] to simplify the L.H.S. Take all the terms to the L.H.S to get 0 in the R.H.S. Take common terms together and write the equation as a product of two terms. Substitute each term equal to 0 and find the general solution. Use: - if \[\sin a=0\Rightarrow a=n\pi \] and if \[\cos a=\cos b,\Rightarrow a=2n\pi +b\], where \[n\in I\].
Complete step-by-step solution
We have been provided with the trigonometric equation: - \[\sin \theta +\sin 5\theta =\sin 3\theta \].
Using the identity: - \[\sin a+\sin b=2\sin \dfrac{a+b}{2}\cos \dfrac{a-b}{2}\] we get,
\[\begin{align}
& \Rightarrow 2\sin \left( \dfrac{\theta +5\theta }{2} \right)\cos \left( \dfrac{\theta -5\theta }{2} \right)=\sin 3\theta \\
& \Rightarrow 2\sin 3\theta \cos \left( -2\theta \right)=\sin 3\theta \\
\end{align}\]
We know that, \[\cos \left( -x \right)=\cos x\],
\[\begin{align}
& \Rightarrow 2\sin 3\theta \cos 2\theta =\sin 3\theta \\
& \Rightarrow 2\sin 3\theta \cos 2\theta -\sin 3\theta =0 \\
\end{align}\]
Taking \[\sin 3\theta \] common we get,
\[\Rightarrow \sin 3\theta \left( 2\cos 2\theta -1 \right)=0\]
Substituting each term equal to 0 one – by – one we get,
Case (i): - When \[\sin 3\theta =0\],
We know that, if \[\sin a=0\Rightarrow a=n\pi \], \[n\in I\]
\[\begin{align}
& \Rightarrow \sin 3\theta =0 \\
& \Rightarrow 3\theta =n\pi \\
\end{align}\]
\[\Rightarrow \theta =\dfrac{n\pi }{3},n\in I\]
Case (ii): - When \[\left( 2\cos 2\theta -1 \right)=0\],
\[\begin{align}
& \Rightarrow 2\cos 2\theta =1 \\
& \Rightarrow \cos 2\theta =\dfrac{1}{2} \\
& \Rightarrow \cos 2\theta =\cos \dfrac{\pi }{3} \\
\end{align}\]
We know that, if \[\cos a=\cos b,\Rightarrow a=2n\pi +b\], \[n\in I\].
\[\begin{align}
& \Rightarrow \cos 2\theta =\cos \dfrac{\pi }{3} \\
& \Rightarrow 2\theta =2n\pi +\dfrac{\pi }{3} \\
& \Rightarrow \theta =n\pi +\dfrac{\pi }{6} \\
& \Rightarrow \theta =\left( 6n+1 \right)\dfrac{\pi }{6},n\in I \\
\end{align}\]
Note: One may note that we have to consider both the cases as our solution because both will satisfy the equation. Remember that we do not have to cancel \[\sin 3\theta \] from both sides, if we will do so then there will be loss of many roots. So, instead of canceling, we have to take common and consider each condition. Always remember the basic formula to write general solutions of all the trigonometric functions.
Complete step-by-step solution
We have been provided with the trigonometric equation: - \[\sin \theta +\sin 5\theta =\sin 3\theta \].
Using the identity: - \[\sin a+\sin b=2\sin \dfrac{a+b}{2}\cos \dfrac{a-b}{2}\] we get,
\[\begin{align}
& \Rightarrow 2\sin \left( \dfrac{\theta +5\theta }{2} \right)\cos \left( \dfrac{\theta -5\theta }{2} \right)=\sin 3\theta \\
& \Rightarrow 2\sin 3\theta \cos \left( -2\theta \right)=\sin 3\theta \\
\end{align}\]
We know that, \[\cos \left( -x \right)=\cos x\],
\[\begin{align}
& \Rightarrow 2\sin 3\theta \cos 2\theta =\sin 3\theta \\
& \Rightarrow 2\sin 3\theta \cos 2\theta -\sin 3\theta =0 \\
\end{align}\]
Taking \[\sin 3\theta \] common we get,
\[\Rightarrow \sin 3\theta \left( 2\cos 2\theta -1 \right)=0\]
Substituting each term equal to 0 one – by – one we get,
Case (i): - When \[\sin 3\theta =0\],
We know that, if \[\sin a=0\Rightarrow a=n\pi \], \[n\in I\]
\[\begin{align}
& \Rightarrow \sin 3\theta =0 \\
& \Rightarrow 3\theta =n\pi \\
\end{align}\]
\[\Rightarrow \theta =\dfrac{n\pi }{3},n\in I\]
Case (ii): - When \[\left( 2\cos 2\theta -1 \right)=0\],
\[\begin{align}
& \Rightarrow 2\cos 2\theta =1 \\
& \Rightarrow \cos 2\theta =\dfrac{1}{2} \\
& \Rightarrow \cos 2\theta =\cos \dfrac{\pi }{3} \\
\end{align}\]
We know that, if \[\cos a=\cos b,\Rightarrow a=2n\pi +b\], \[n\in I\].
\[\begin{align}
& \Rightarrow \cos 2\theta =\cos \dfrac{\pi }{3} \\
& \Rightarrow 2\theta =2n\pi +\dfrac{\pi }{3} \\
& \Rightarrow \theta =n\pi +\dfrac{\pi }{6} \\
& \Rightarrow \theta =\left( 6n+1 \right)\dfrac{\pi }{6},n\in I \\
\end{align}\]
Note: One may note that we have to consider both the cases as our solution because both will satisfy the equation. Remember that we do not have to cancel \[\sin 3\theta \] from both sides, if we will do so then there will be loss of many roots. So, instead of canceling, we have to take common and consider each condition. Always remember the basic formula to write general solutions of all the trigonometric functions.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

