
Solve the quadratic $4{x^2} + 4bx - \left( {{a^2} - {b^2}} \right) = 0$ for the value of x.
Answer
603.3k+ views
Hint: Here, we will proceed by rearranging the terms in the LHS of the given quadratic equation so that we can use the formula ${\left( {y + z} \right)^2} = {y^2} + 2yz + {z^2}$. From there we will get two linear equations in variable x which can be easily solved for the values of x.
Complete step-by-step answer:
Given quadratic equation is $4{x^2} + 4bx - \left( {{a^2} - {b^2}} \right) = 0{\text{ }} \to {\text{(1)}}$
$ \Rightarrow 4{x^2} + 4bx - {a^2} + {b^2} = 0$
Taking the term $ - {a^2}$ from the LHS to the RHS of the above equation, we get
$ \Rightarrow 4{x^2} + 4bx + {b^2} = {a^2}{\text{ }} \to {\text{(2)}}$
In the above equation, the term $4{x^2}$ can also be written as ${\left( {2x} \right)^2}$ and the term $4bx$ can also be written as ${\text{2}}\left( {2x} \right)\left( b \right)$ so finally equation (2) can be written as
$ \Rightarrow {\left( {2x} \right)^2} + {\text{2}}\left( {2x} \right)\left( b \right) + {b^2} = {a^2}$
Using the formula ${\left( {y + z} \right)^2} = {y^2} + 2yz + {z^2}$ in the above equation, we get
$
\Rightarrow {\left( {2x + b} \right)^2} = {a^2} \\
\Rightarrow \left( {2x + b} \right) = \pm \sqrt {{a^2}} \\
\Rightarrow 2x + b = \pm a \\
$
Either $
2x + b = a \\
\Rightarrow 2x = a - b \\
\Rightarrow x = \dfrac{{a - b}}{2} \\
$ or $
2x + b = - a \\
\Rightarrow 2x = - a - b \\
\Rightarrow x = - \left( {\dfrac{{a + b}}{2}} \right) \\
$
Therefore, the roots of the given quadratic equation are $x = \dfrac{{a - b}}{2}$ and $x = - \left( {\dfrac{{a + b}}{2}} \right)$.
Note: In this particular problem, the roots of the given quadratic equation i.e., $4{x^2} + 4bx - \left( {{a^2} - {b^2}} \right) = 0$ can also be solved by comparing this equation with the general form of any quadratic equation i.e., $a{x^2} + bx + c = 0$ and then using the discriminant method i.e., $x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$.
Complete step-by-step answer:
Given quadratic equation is $4{x^2} + 4bx - \left( {{a^2} - {b^2}} \right) = 0{\text{ }} \to {\text{(1)}}$
$ \Rightarrow 4{x^2} + 4bx - {a^2} + {b^2} = 0$
Taking the term $ - {a^2}$ from the LHS to the RHS of the above equation, we get
$ \Rightarrow 4{x^2} + 4bx + {b^2} = {a^2}{\text{ }} \to {\text{(2)}}$
In the above equation, the term $4{x^2}$ can also be written as ${\left( {2x} \right)^2}$ and the term $4bx$ can also be written as ${\text{2}}\left( {2x} \right)\left( b \right)$ so finally equation (2) can be written as
$ \Rightarrow {\left( {2x} \right)^2} + {\text{2}}\left( {2x} \right)\left( b \right) + {b^2} = {a^2}$
Using the formula ${\left( {y + z} \right)^2} = {y^2} + 2yz + {z^2}$ in the above equation, we get
$
\Rightarrow {\left( {2x + b} \right)^2} = {a^2} \\
\Rightarrow \left( {2x + b} \right) = \pm \sqrt {{a^2}} \\
\Rightarrow 2x + b = \pm a \\
$
Either $
2x + b = a \\
\Rightarrow 2x = a - b \\
\Rightarrow x = \dfrac{{a - b}}{2} \\
$ or $
2x + b = - a \\
\Rightarrow 2x = - a - b \\
\Rightarrow x = - \left( {\dfrac{{a + b}}{2}} \right) \\
$
Therefore, the roots of the given quadratic equation are $x = \dfrac{{a - b}}{2}$ and $x = - \left( {\dfrac{{a + b}}{2}} \right)$.
Note: In this particular problem, the roots of the given quadratic equation i.e., $4{x^2} + 4bx - \left( {{a^2} - {b^2}} \right) = 0$ can also be solved by comparing this equation with the general form of any quadratic equation i.e., $a{x^2} + bx + c = 0$ and then using the discriminant method i.e., $x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

