
Solve the given inverse trigonometric function ${\tan ^{ - 1}}1 + {\cos ^{ - 1}}\left( {\dfrac{{ - 1}}{2}} \right) + {\sin ^{ - 1}}\left( {\dfrac{{ - 1}}{2}} \right)$
Answer
519.9k+ views
Hint:- We have to use properties of inverse trigonometric functions ${\cos ^{ - 1}}\left( {\cos x} \right) = x$, ${\tan ^{ - 1}}\left( {\tan x} \right) = x$, ${\sin ^{ - 1}}\left( {\sin x} \right) = x$ to solve the given problem.
Complete step by step answer:
We need to evaluate
${\tan ^{ - 1}}1 + {\cos ^{ - 1}}\left( {\dfrac{{ - 1}}{2}} \right) + {\sin ^{ - 1}}\left( {\dfrac{{ - 1}}{2}} \right)$
We can write it as
${\tan ^{ - 1}}\left( {\tan \dfrac{\pi }{4}} \right) + {\cos ^{ - 1}}\left( {\cos \dfrac{{2\pi }}{3}} \right) + {\sin ^{ - 1}}\left( {\sin \left( {\dfrac{{ - \pi }}{6}} \right)} \right)$$ \ldots \ldots \left( 1 \right)$
$
\because \tan \dfrac{\pi }{4} = 1 \\
\cos \dfrac{{2\pi }}{3} = \dfrac{{ - 1}}{2} \\
\sin \left( {\dfrac{{ - \pi }}{6}} \right) = - \sin \left( {\dfrac{\pi }{6}} \right) = \dfrac{{ - 1}}{2} \\
$
${\tan ^{ - 1}}\left( {\tan \dfrac{\pi }{4}} \right) = \dfrac{\pi }{4}$ Because we know ${\tan ^{ - 1}}\left( {\tan x} \right) = x$
For $\dfrac{{ - \pi }}{2} < x < \dfrac{\pi }{2}$
${\cos ^{ - 1}}\left( {\cos \dfrac{{2\pi }}{3}} \right) = \dfrac{{2\pi }}{3}$ Because we know ${\cos ^{ - 1}}\left( {\cos x} \right) = x$
For $0 \leqslant x \leqslant \pi $
${\sin ^{ - 1}}\left( {\sin \dfrac{{ - \pi }}{6}} \right) = \dfrac{{ - \pi }}{6}$ Because we know ${\sin ^{ - 1}}\left( {\sin x} \right) = x$
For $\dfrac{{ - \pi }}{2} \leqslant x \leqslant \dfrac{\pi }{2}$
Now equation $\left( 1 \right)$becomes
$\dfrac{\pi }{4} + \dfrac{{2\pi }}{3} - \dfrac{\pi }{6}$=$\dfrac{{3\pi }}{4}$
Required answer is $\dfrac{{3\pi }}{4}$
Note: - Whenever we get these types of questions the key concept of solving these types of questions is we should have knowledge of changing inverse trigonometric functions according to requirement and remember the domain and range of these inverse trigonometric functions.
Complete step by step answer:
We need to evaluate
${\tan ^{ - 1}}1 + {\cos ^{ - 1}}\left( {\dfrac{{ - 1}}{2}} \right) + {\sin ^{ - 1}}\left( {\dfrac{{ - 1}}{2}} \right)$
We can write it as
${\tan ^{ - 1}}\left( {\tan \dfrac{\pi }{4}} \right) + {\cos ^{ - 1}}\left( {\cos \dfrac{{2\pi }}{3}} \right) + {\sin ^{ - 1}}\left( {\sin \left( {\dfrac{{ - \pi }}{6}} \right)} \right)$$ \ldots \ldots \left( 1 \right)$
$
\because \tan \dfrac{\pi }{4} = 1 \\
\cos \dfrac{{2\pi }}{3} = \dfrac{{ - 1}}{2} \\
\sin \left( {\dfrac{{ - \pi }}{6}} \right) = - \sin \left( {\dfrac{\pi }{6}} \right) = \dfrac{{ - 1}}{2} \\
$
${\tan ^{ - 1}}\left( {\tan \dfrac{\pi }{4}} \right) = \dfrac{\pi }{4}$ Because we know ${\tan ^{ - 1}}\left( {\tan x} \right) = x$
For $\dfrac{{ - \pi }}{2} < x < \dfrac{\pi }{2}$
${\cos ^{ - 1}}\left( {\cos \dfrac{{2\pi }}{3}} \right) = \dfrac{{2\pi }}{3}$ Because we know ${\cos ^{ - 1}}\left( {\cos x} \right) = x$
For $0 \leqslant x \leqslant \pi $
${\sin ^{ - 1}}\left( {\sin \dfrac{{ - \pi }}{6}} \right) = \dfrac{{ - \pi }}{6}$ Because we know ${\sin ^{ - 1}}\left( {\sin x} \right) = x$
For $\dfrac{{ - \pi }}{2} \leqslant x \leqslant \dfrac{\pi }{2}$
Now equation $\left( 1 \right)$becomes
$\dfrac{\pi }{4} + \dfrac{{2\pi }}{3} - \dfrac{\pi }{6}$=$\dfrac{{3\pi }}{4}$
Required answer is $\dfrac{{3\pi }}{4}$
Note: - Whenever we get these types of questions the key concept of solving these types of questions is we should have knowledge of changing inverse trigonometric functions according to requirement and remember the domain and range of these inverse trigonometric functions.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
The probability that a leap year will have only 52 class 12 maths CBSE

Describe the poetic devices used in the poem Aunt Jennifers class 12 english CBSE

And such too is the grandeur of the dooms We have imagined class 12 english CBSE

What does the god that failed refer to class 12 english CBSE

Which country did Danny Casey play for class 12 english CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE
