
Solve the given inverse trigonometric function ${\tan ^{ - 1}}1 + {\cos ^{ - 1}}\left( {\dfrac{{ - 1}}{2}} \right) + {\sin ^{ - 1}}\left( {\dfrac{{ - 1}}{2}} \right)$
Answer
617.4k+ views
Hint:- We have to use properties of inverse trigonometric functions ${\cos ^{ - 1}}\left( {\cos x} \right) = x$, ${\tan ^{ - 1}}\left( {\tan x} \right) = x$, ${\sin ^{ - 1}}\left( {\sin x} \right) = x$ to solve the given problem.
Complete step by step answer:
We need to evaluate
${\tan ^{ - 1}}1 + {\cos ^{ - 1}}\left( {\dfrac{{ - 1}}{2}} \right) + {\sin ^{ - 1}}\left( {\dfrac{{ - 1}}{2}} \right)$
We can write it as
${\tan ^{ - 1}}\left( {\tan \dfrac{\pi }{4}} \right) + {\cos ^{ - 1}}\left( {\cos \dfrac{{2\pi }}{3}} \right) + {\sin ^{ - 1}}\left( {\sin \left( {\dfrac{{ - \pi }}{6}} \right)} \right)$$ \ldots \ldots \left( 1 \right)$
$
\because \tan \dfrac{\pi }{4} = 1 \\
\cos \dfrac{{2\pi }}{3} = \dfrac{{ - 1}}{2} \\
\sin \left( {\dfrac{{ - \pi }}{6}} \right) = - \sin \left( {\dfrac{\pi }{6}} \right) = \dfrac{{ - 1}}{2} \\
$
${\tan ^{ - 1}}\left( {\tan \dfrac{\pi }{4}} \right) = \dfrac{\pi }{4}$ Because we know ${\tan ^{ - 1}}\left( {\tan x} \right) = x$
For $\dfrac{{ - \pi }}{2} < x < \dfrac{\pi }{2}$
${\cos ^{ - 1}}\left( {\cos \dfrac{{2\pi }}{3}} \right) = \dfrac{{2\pi }}{3}$ Because we know ${\cos ^{ - 1}}\left( {\cos x} \right) = x$
For $0 \leqslant x \leqslant \pi $
${\sin ^{ - 1}}\left( {\sin \dfrac{{ - \pi }}{6}} \right) = \dfrac{{ - \pi }}{6}$ Because we know ${\sin ^{ - 1}}\left( {\sin x} \right) = x$
For $\dfrac{{ - \pi }}{2} \leqslant x \leqslant \dfrac{\pi }{2}$
Now equation $\left( 1 \right)$becomes
$\dfrac{\pi }{4} + \dfrac{{2\pi }}{3} - \dfrac{\pi }{6}$=$\dfrac{{3\pi }}{4}$
Required answer is $\dfrac{{3\pi }}{4}$
Note: - Whenever we get these types of questions the key concept of solving these types of questions is we should have knowledge of changing inverse trigonometric functions according to requirement and remember the domain and range of these inverse trigonometric functions.
Complete step by step answer:
We need to evaluate
${\tan ^{ - 1}}1 + {\cos ^{ - 1}}\left( {\dfrac{{ - 1}}{2}} \right) + {\sin ^{ - 1}}\left( {\dfrac{{ - 1}}{2}} \right)$
We can write it as
${\tan ^{ - 1}}\left( {\tan \dfrac{\pi }{4}} \right) + {\cos ^{ - 1}}\left( {\cos \dfrac{{2\pi }}{3}} \right) + {\sin ^{ - 1}}\left( {\sin \left( {\dfrac{{ - \pi }}{6}} \right)} \right)$$ \ldots \ldots \left( 1 \right)$
$
\because \tan \dfrac{\pi }{4} = 1 \\
\cos \dfrac{{2\pi }}{3} = \dfrac{{ - 1}}{2} \\
\sin \left( {\dfrac{{ - \pi }}{6}} \right) = - \sin \left( {\dfrac{\pi }{6}} \right) = \dfrac{{ - 1}}{2} \\
$
${\tan ^{ - 1}}\left( {\tan \dfrac{\pi }{4}} \right) = \dfrac{\pi }{4}$ Because we know ${\tan ^{ - 1}}\left( {\tan x} \right) = x$
For $\dfrac{{ - \pi }}{2} < x < \dfrac{\pi }{2}$
${\cos ^{ - 1}}\left( {\cos \dfrac{{2\pi }}{3}} \right) = \dfrac{{2\pi }}{3}$ Because we know ${\cos ^{ - 1}}\left( {\cos x} \right) = x$
For $0 \leqslant x \leqslant \pi $
${\sin ^{ - 1}}\left( {\sin \dfrac{{ - \pi }}{6}} \right) = \dfrac{{ - \pi }}{6}$ Because we know ${\sin ^{ - 1}}\left( {\sin x} \right) = x$
For $\dfrac{{ - \pi }}{2} \leqslant x \leqslant \dfrac{\pi }{2}$
Now equation $\left( 1 \right)$becomes
$\dfrac{\pi }{4} + \dfrac{{2\pi }}{3} - \dfrac{\pi }{6}$=$\dfrac{{3\pi }}{4}$
Required answer is $\dfrac{{3\pi }}{4}$
Note: - Whenever we get these types of questions the key concept of solving these types of questions is we should have knowledge of changing inverse trigonometric functions according to requirement and remember the domain and range of these inverse trigonometric functions.
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

