
Solve the given integral, \[\int{{{\sin }^{4}}x\cdot dx}\]
Answer
588.3k+ views
Hint: Split the integral as a square function. Apply double angle identity for \[{{\sin }^{2}}x\] and simplify it. Find again the double angle identity for \[{{\cos }^{2}}x\] . Thus, solve the expression formed by using basic integration formulas.
Complete step-by-step answer:
We have been given the integral which we need to solve. Let us take it as I. Thus, we can write it as,
\[I=\int{{{\sin }^{4}}x\cdot dx}\] ………………………………(1)
This integral is mostly about rewriting the functions. As a rule of thumb, if the power is even, we can use the double angle formula.
The double angle formula says that,
\[\cos 2x={{\cos }^{2}}x-{{\sin }^{2}}x\] …………………………….(2)
Now, we know that \[{{\sin }^{2}}x+{{\cos }^{2}}x=1\]
\[\therefore {{\cos }^{2}}x=1-{{\sin }^{2}}x\] , putting this value in (2), we get
\[\cos 2x=1-{{\sin }^{2}}x-{{\sin }^{2}}x\]
\[\cos 2x=1-2{{\sin }^{2}}x\]
Hence, we get that \[{{\sin }^{2}}x=\dfrac{1}{2}\left( 1-\cos 2x \right)dx\] ……………………………(3)
Now, we can write equation (1) as,
\[I=\int{{{\sin }^{2}}x\cdot }{{\sin }^{2}}xdx\]
Now put \[{{\sin }^{2}}x=\dfrac{1}{2}\left( 1-\cos 2x \right)\] in the above expression.
\[\therefore I=\int{\dfrac{1}{2}\left( 1-\cos 2x \right)\cdot \dfrac{1}{2}\left( 1-\cos 2x \right)dx}\]
\[=\dfrac{1}{4}{{\left( 1-\cos 2x \right)}^{2}}dx\]
We know the identity, \[{{\left( a-b \right)}^{2}}={{a}^{2}}-2ab+{{b}^{2}}\] . Split the above as,
\[\therefore I=\dfrac{1}{4}\int{\left[ 1-2\cos 2x+{{\cos }^{2}}2x \right]dx}\] ……………………………………..(4)
Now from (2), \[\cos 2x={{\cos }^{2}}x-{{\sin }^{2}}x\]
Put \[{{\sin }^{2}}x=1-{{\cos }^{2}}x\]
\[\therefore \cos 2x={{\cos }^{2}}x-\left( 1-{{\cos }^{2}}x \right)\]
\[\cos 2x={{\cos }^{2}}x-1+{{\cos }^{2}}x\]
\[\therefore 2{{\cos }^{2}}x=\cos 2x+1\]
\[\therefore {{\cos }^{2}}x=\dfrac{1}{2}\left( 1+\cos 2x \right)\]
\[\therefore {{\cos }^{2}}\left( 2x \right)=\dfrac{1}{2}\left( 1+\cos \left( 2\left( 2x \right) \right) \right)=\dfrac{1}{2}\left( 1+4x \right)\] …………………………..(5)
Substitute the values of (5) in (4).
\[I=\dfrac{1}{4}\int{\left[ 1-2\cos 2x+{{\cos }^{2}}2x \right]}dx\]
\[=\dfrac{1}{4}\int{\left[ 1-2\cos 2x+\dfrac{1}{2}\left( 1+\cos 4x \right) \right]}dx\]
\[=\dfrac{1}{4}\int{\left[ 1-2\cos 2x+\dfrac{1}{2}+\dfrac{\cos 4x}{2} \right]}dx\]
\[I=\dfrac{1}{4}\left( \int{1dx}-2\int{\cos 2x\text{ }dx}+\int{\dfrac{1}{2}\cdot dx}+\dfrac{1}{2}\int{\cos 4x}\cdot dx \right)\] ………………………………….(6)
Let us first see the integration of \[\int{2\cos 2x\text{ }dx}\] and \[\int{\cos 4x\text{ }dx}\] .
Let us take \[{{I}_{1}}=\int{2\cos 2x\text{ }dx}\]
Let us put \[u=2x\] in the above expression,
\[\therefore \] derivative of u, \[du=2\cdot dx\]
\[\therefore dx=\dfrac{1}{2}du\]
\[\therefore {{I}_{1}}=\int{2\cos 2x\text{ }dx}\]
\[=\int{\dfrac{2\cos u}{2}\cdot du}=\int{\cos u}\cdot du\]
We know that \[\int{\cos u\cdot du}=\sin u\]
\[\therefore {{I}_{1}}=\sin u=\sin 2x\]
\[\Rightarrow {{I}_{1}}=\sin 2x\] ……………………………………(7)
Let us take \[u=4x\]
\[\therefore \] derivative of \[u\cdot du=4dx\]
\[\therefore dx=\dfrac{1}{4}du\]
\[\therefore {{I}_{2}}=\int{\cos 4x\text{ }dx}=\dfrac{1}{4}\int{\cos u\cdot du}=\dfrac{1}{4}\sin u\]
\[\therefore \int{\cos 4xdx}=\dfrac{\sin 4x}{4}\] …………………………………(8)
Now put the value of (7) and (8) in (6), we get
\[I=\dfrac{1}{4}\left[ \int{1dx-\int{2\cos 2x\text{ }dx+\int{\dfrac{1}{2}dx}}}+\dfrac{1}{2}\int{\cos 4x\text{ }dx} \right]\]
\[I=\dfrac{1}{4}\left[ x-\sin 2x+\dfrac{x}{2}+\dfrac{1}{2}\left( \dfrac{1}{4}\sin 4x \right) \right]+c\]
\[I=\dfrac{1}{4}\left[ x-\sin 2x+\dfrac{x}{2}+\dfrac{1}{8}\sin 4x \right]+c\]
\[=\dfrac{x}{4}-\dfrac{\sin 2x}{4}+\dfrac{x}{8}+\dfrac{\sin 4x}{32}+c\]
\[=\left( \dfrac{x}{4}+\dfrac{x}{8} \right)-\dfrac{\sin 2x}{4}+\dfrac{\sin 4x}{32}+c\]
\[\therefore I=\dfrac{3x}{6}-\dfrac{1}{4}\sin \left( 2x \right)+\dfrac{\sin 4x}{32}+c\]
Hence, we got the required solution as,
\[\int{{{\sin }^{4}}xdx}=\dfrac{3x}{6}-\dfrac{\sin 2x}{4}+\dfrac{\sin 4x}{32}+c\]
Note: The basics of solution of this integral is that you know the double angle formulas. There are double angle and half angle identities for sine, cosine and tangent functions. It is important that you remember the identities.
Complete step-by-step answer:
We have been given the integral which we need to solve. Let us take it as I. Thus, we can write it as,
\[I=\int{{{\sin }^{4}}x\cdot dx}\] ………………………………(1)
This integral is mostly about rewriting the functions. As a rule of thumb, if the power is even, we can use the double angle formula.
The double angle formula says that,
\[\cos 2x={{\cos }^{2}}x-{{\sin }^{2}}x\] …………………………….(2)
Now, we know that \[{{\sin }^{2}}x+{{\cos }^{2}}x=1\]
\[\therefore {{\cos }^{2}}x=1-{{\sin }^{2}}x\] , putting this value in (2), we get
\[\cos 2x=1-{{\sin }^{2}}x-{{\sin }^{2}}x\]
\[\cos 2x=1-2{{\sin }^{2}}x\]
Hence, we get that \[{{\sin }^{2}}x=\dfrac{1}{2}\left( 1-\cos 2x \right)dx\] ……………………………(3)
Now, we can write equation (1) as,
\[I=\int{{{\sin }^{2}}x\cdot }{{\sin }^{2}}xdx\]
Now put \[{{\sin }^{2}}x=\dfrac{1}{2}\left( 1-\cos 2x \right)\] in the above expression.
\[\therefore I=\int{\dfrac{1}{2}\left( 1-\cos 2x \right)\cdot \dfrac{1}{2}\left( 1-\cos 2x \right)dx}\]
\[=\dfrac{1}{4}{{\left( 1-\cos 2x \right)}^{2}}dx\]
We know the identity, \[{{\left( a-b \right)}^{2}}={{a}^{2}}-2ab+{{b}^{2}}\] . Split the above as,
\[\therefore I=\dfrac{1}{4}\int{\left[ 1-2\cos 2x+{{\cos }^{2}}2x \right]dx}\] ……………………………………..(4)
Now from (2), \[\cos 2x={{\cos }^{2}}x-{{\sin }^{2}}x\]
Put \[{{\sin }^{2}}x=1-{{\cos }^{2}}x\]
\[\therefore \cos 2x={{\cos }^{2}}x-\left( 1-{{\cos }^{2}}x \right)\]
\[\cos 2x={{\cos }^{2}}x-1+{{\cos }^{2}}x\]
\[\therefore 2{{\cos }^{2}}x=\cos 2x+1\]
\[\therefore {{\cos }^{2}}x=\dfrac{1}{2}\left( 1+\cos 2x \right)\]
\[\therefore {{\cos }^{2}}\left( 2x \right)=\dfrac{1}{2}\left( 1+\cos \left( 2\left( 2x \right) \right) \right)=\dfrac{1}{2}\left( 1+4x \right)\] …………………………..(5)
Substitute the values of (5) in (4).
\[I=\dfrac{1}{4}\int{\left[ 1-2\cos 2x+{{\cos }^{2}}2x \right]}dx\]
\[=\dfrac{1}{4}\int{\left[ 1-2\cos 2x+\dfrac{1}{2}\left( 1+\cos 4x \right) \right]}dx\]
\[=\dfrac{1}{4}\int{\left[ 1-2\cos 2x+\dfrac{1}{2}+\dfrac{\cos 4x}{2} \right]}dx\]
\[I=\dfrac{1}{4}\left( \int{1dx}-2\int{\cos 2x\text{ }dx}+\int{\dfrac{1}{2}\cdot dx}+\dfrac{1}{2}\int{\cos 4x}\cdot dx \right)\] ………………………………….(6)
Let us first see the integration of \[\int{2\cos 2x\text{ }dx}\] and \[\int{\cos 4x\text{ }dx}\] .
Let us take \[{{I}_{1}}=\int{2\cos 2x\text{ }dx}\]
Let us put \[u=2x\] in the above expression,
\[\therefore \] derivative of u, \[du=2\cdot dx\]
\[\therefore dx=\dfrac{1}{2}du\]
\[\therefore {{I}_{1}}=\int{2\cos 2x\text{ }dx}\]
\[=\int{\dfrac{2\cos u}{2}\cdot du}=\int{\cos u}\cdot du\]
We know that \[\int{\cos u\cdot du}=\sin u\]
\[\therefore {{I}_{1}}=\sin u=\sin 2x\]
\[\Rightarrow {{I}_{1}}=\sin 2x\] ……………………………………(7)
Let us take \[u=4x\]
\[\therefore \] derivative of \[u\cdot du=4dx\]
\[\therefore dx=\dfrac{1}{4}du\]
\[\therefore {{I}_{2}}=\int{\cos 4x\text{ }dx}=\dfrac{1}{4}\int{\cos u\cdot du}=\dfrac{1}{4}\sin u\]
\[\therefore \int{\cos 4xdx}=\dfrac{\sin 4x}{4}\] …………………………………(8)
Now put the value of (7) and (8) in (6), we get
\[I=\dfrac{1}{4}\left[ \int{1dx-\int{2\cos 2x\text{ }dx+\int{\dfrac{1}{2}dx}}}+\dfrac{1}{2}\int{\cos 4x\text{ }dx} \right]\]
\[I=\dfrac{1}{4}\left[ x-\sin 2x+\dfrac{x}{2}+\dfrac{1}{2}\left( \dfrac{1}{4}\sin 4x \right) \right]+c\]
\[I=\dfrac{1}{4}\left[ x-\sin 2x+\dfrac{x}{2}+\dfrac{1}{8}\sin 4x \right]+c\]
\[=\dfrac{x}{4}-\dfrac{\sin 2x}{4}+\dfrac{x}{8}+\dfrac{\sin 4x}{32}+c\]
\[=\left( \dfrac{x}{4}+\dfrac{x}{8} \right)-\dfrac{\sin 2x}{4}+\dfrac{\sin 4x}{32}+c\]
\[\therefore I=\dfrac{3x}{6}-\dfrac{1}{4}\sin \left( 2x \right)+\dfrac{\sin 4x}{32}+c\]
Hence, we got the required solution as,
\[\int{{{\sin }^{4}}xdx}=\dfrac{3x}{6}-\dfrac{\sin 2x}{4}+\dfrac{\sin 4x}{32}+c\]
Note: The basics of solution of this integral is that you know the double angle formulas. There are double angle and half angle identities for sine, cosine and tangent functions. It is important that you remember the identities.
Recently Updated Pages
Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Plot a graph between potential difference V and current class 12 physics CBSE

