
Solve the given equation:
$\dfrac{{(m + n)x - (a - b)}}{{(m - n)x - (a + b)}} = \dfrac{{(m + n)x - (a + c)}}{{(m - n)x - (a - c)}}$
Answer
595.5k+ views
Hint: In this question, first we add 1 on both sides of the equation and let it be equation 1 and then again in the original equation we add -1 on the both sides and let it be equation 2. Now, we will divide the equation 1 and 2 and solve it further to get the value of x.
Complete step-by-step answer:
The given equation is :
$\dfrac{{(m + n)x - (a - b)}}{{(m - n)x - (a + b)}} = \dfrac{{(m + n)x + (a + c)}}{{(m - n)x + (a - c)}}$ (1)
First, we add 1 to both sides of the above equation.
On adding 1 on both sides, we get:
$\dfrac{{(m + n)x - (a - b)}}{{(m - n)x - (a + b)}} + 1 = \dfrac{{(m + n)x + (a + c)}}{{(m - n)x + (a - c)}} + 1$
On solving it, we have:
$\dfrac{{(m + n)x - (a - b) + (m - n)x - (a + b)}}{{(m - n)x - (a + b)}} = \dfrac{{(m + n)x + (a + c) + (m - n)x + (a - c)}}{{(m - n)x + (a - c)}}$
$ \Rightarrow \dfrac{{2mx - 2a}}{{(m - n)x - (a + b)}} = \dfrac{{2mx + 2a}}{{(m - n)x + (a - c)}}$ (2)
Now, adding -1 on the both sides of equation 1, we get:
$\dfrac{{(m + n)x - (a - b)}}{{(m - n)x - (a + b)}} - 1 = \dfrac{{(m + n)x + (a + c)}}{{(m - n)x + (a - c)}} - 1$.
On rearranging the above equation, we get:
$\dfrac{{(m + n)x - (a - b) - (m - n)x + (a + b)}}{{(m - n)x - (a + b)}} = \dfrac{{(m + n)x + (a + c) - (m - n)x - (a - c)}}{{(m - n)x + (a - c)}}$
On simplifying the LHS and RHS, we get:
$ \Rightarrow \dfrac{{2nx + 2b}}{{(m - n)x - (a + b)}} = \dfrac{{2nx + 2c}}{{(m - n)x + (a - c)}}$ (3)
Now, on dividing equation 1 and 2, we get:
$\dfrac{{2mx - 2a}}{{2nx + 2b}} = \dfrac{{2mx + 2a}}{{2nx + 2c}}$
On dividing both sides by 2, we have:
$ \Rightarrow \dfrac{{mx - a}}{{nx + b}} = \dfrac{{mx + a}}{{nx + c}}$
On cross multiplying, we get:
$(mx - a)(nx + c)= (nx + b)(mx + a)$
On further solving, we get:
$mn{x^2}$ +$x(mc – an) –ac$ =$mn{x^2}$ $+x(an + bm) +ab$
Cancelling the square terms on both sides and rearranging the terms, we get:
$ \Rightarrow $ $x(mc – an) – x(an + bm) = ab +ac$.
Taking the ‘x’ common, we get:
$x(m(c –b) – 2an ) = a(b + c)$
$ \Rightarrow x = \dfrac{{a(b + c)}}{{m(c - b) - 2an}}$ .
Therefore, the above value of ‘x’ is the solution of the given equation.
Note: In such a type of question, we will use the concept of componendo and dividend. If a/b = c/d is a proportion then adding 1 on both sides is componendo and adding -1 on both sides is dividendo. To solve this question, we can also use the result $\dfrac{x}{y} = \dfrac{{x + y}}{{x - y}}$ .
Complete step-by-step answer:
The given equation is :
$\dfrac{{(m + n)x - (a - b)}}{{(m - n)x - (a + b)}} = \dfrac{{(m + n)x + (a + c)}}{{(m - n)x + (a - c)}}$ (1)
First, we add 1 to both sides of the above equation.
On adding 1 on both sides, we get:
$\dfrac{{(m + n)x - (a - b)}}{{(m - n)x - (a + b)}} + 1 = \dfrac{{(m + n)x + (a + c)}}{{(m - n)x + (a - c)}} + 1$
On solving it, we have:
$\dfrac{{(m + n)x - (a - b) + (m - n)x - (a + b)}}{{(m - n)x - (a + b)}} = \dfrac{{(m + n)x + (a + c) + (m - n)x + (a - c)}}{{(m - n)x + (a - c)}}$
$ \Rightarrow \dfrac{{2mx - 2a}}{{(m - n)x - (a + b)}} = \dfrac{{2mx + 2a}}{{(m - n)x + (a - c)}}$ (2)
Now, adding -1 on the both sides of equation 1, we get:
$\dfrac{{(m + n)x - (a - b)}}{{(m - n)x - (a + b)}} - 1 = \dfrac{{(m + n)x + (a + c)}}{{(m - n)x + (a - c)}} - 1$.
On rearranging the above equation, we get:
$\dfrac{{(m + n)x - (a - b) - (m - n)x + (a + b)}}{{(m - n)x - (a + b)}} = \dfrac{{(m + n)x + (a + c) - (m - n)x - (a - c)}}{{(m - n)x + (a - c)}}$
On simplifying the LHS and RHS, we get:
$ \Rightarrow \dfrac{{2nx + 2b}}{{(m - n)x - (a + b)}} = \dfrac{{2nx + 2c}}{{(m - n)x + (a - c)}}$ (3)
Now, on dividing equation 1 and 2, we get:
$\dfrac{{2mx - 2a}}{{2nx + 2b}} = \dfrac{{2mx + 2a}}{{2nx + 2c}}$
On dividing both sides by 2, we have:
$ \Rightarrow \dfrac{{mx - a}}{{nx + b}} = \dfrac{{mx + a}}{{nx + c}}$
On cross multiplying, we get:
$(mx - a)(nx + c)= (nx + b)(mx + a)$
On further solving, we get:
$mn{x^2}$ +$x(mc – an) –ac$ =$mn{x^2}$ $+x(an + bm) +ab$
Cancelling the square terms on both sides and rearranging the terms, we get:
$ \Rightarrow $ $x(mc – an) – x(an + bm) = ab +ac$.
Taking the ‘x’ common, we get:
$x(m(c –b) – 2an ) = a(b + c)$
$ \Rightarrow x = \dfrac{{a(b + c)}}{{m(c - b) - 2an}}$ .
Therefore, the above value of ‘x’ is the solution of the given equation.
Note: In such a type of question, we will use the concept of componendo and dividend. If a/b = c/d is a proportion then adding 1 on both sides is componendo and adding -1 on both sides is dividendo. To solve this question, we can also use the result $\dfrac{x}{y} = \dfrac{{x + y}}{{x - y}}$ .
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

Trending doubts
What is BLO What is the full form of BLO class 8 social science CBSE

What are the 12 elements of nature class 8 chemistry CBSE

Citizens of India can vote at the age of A 18 years class 8 social science CBSE

Full form of STD, ISD and PCO

Convert 40circ C to Fahrenheit A 104circ F B 107circ class 8 maths CBSE

Advantages and disadvantages of science


