
Solve the given differentiation $\dfrac{d}{{dx}}\left( {\dfrac{x}{{\sin x}}} \right)$
a)${\text{csc }}x\left( {1 + x\cot x} \right)$
b)${\text{csc }}x\left( {x\cot x - 1} \right)$
c)${\text{csc }}x\left( {1 - x\cot x} \right)$
d)${\text{csc }}x\left( {1 + \cos x} \right)$
Answer
507.3k+ views
Hint: We can use quotient rule to solve this differentiation which is given as-
$ \Rightarrow \dfrac{d}{{dx}}\left[ {\dfrac{{f\left( x \right)}}{{g\left( x \right)}}} \right] = \dfrac{{g\left( x \right)f'\left( x \right) - f\left( x \right)g'\left( x \right)}}{{{g^2}\left( x \right)}}$
Where $f\left( x \right)$ and $g\left( x \right)$ are functions of x and $f'\left( x \right)$ is first order derivative of function$f\left( x \right)$ while $g'\left( x \right)$ is first order derivative of $g\left( x \right)$.Then use the formula$\dfrac{1}{{\sin x}} = \csc x$ and $\dfrac{{\cos x}}{{\sin x}} = \cot x$ and simplify the equation.
Complete step-by-step answer:
We have to differentiate $\dfrac{d}{{dx}}\left( {\dfrac{x}{{\sin x}}} \right)$
So we will use the formula-
$ \Rightarrow \dfrac{d}{{dx}}\left[ {\dfrac{{f\left( x \right)}}{{g\left( x \right)}}} \right] = \dfrac{{g\left( x \right)f'\left( x \right) - f\left( x \right)g'\left( x \right)}}{{{g^2}\left( x \right)}}$
Assume here $f\left( x \right) = x$ and $g\left( x \right) = \sin x$ then on using the formula we get,
$ \Rightarrow \dfrac{d}{{dx}}\left[ {\dfrac{x}{{\sin x}}} \right] = \dfrac{{\sin x\dfrac{{dx}}{{dx}} - x\dfrac{{d\left( {\sin x} \right)}}{{dx}}}}{{{{\sin }^2}x}}$
Where $f\left( x \right)$ and $g\left( x \right)$ are functions of x and $f'\left( x \right)$ is first order derivative of function$f\left( x \right)$ while $g'\left( x \right)$ is first order derivative of $g\left( x \right)$
Now we know that $\dfrac{{d\sin x}}{{dx}} = \cos x$ and differentiation of x is $1$
So on using these formulas we get,
$ \Rightarrow \dfrac{d}{{dx}}\left[ {\dfrac{x}{{\sin x}}} \right] = \dfrac{{\sin x - x\cos x}}{{{{\sin }^2}x}}$
On separating the terms we get,
\[ \Rightarrow \dfrac{d}{{dx}}\left[ {\dfrac{x}{{\sin x}}} \right] = \dfrac{{\sin x}}{{{{\sin }^2}x}} - \dfrac{{x\cos x}}{{{{\sin }^2}x}}\]
On solving further we get,
\[ \Rightarrow \dfrac{d}{{dx}}\left[ {\dfrac{x}{{\sin x}}} \right] = \dfrac{1}{{\sin x}} - \dfrac{{x\cos x}}{{{{\sin }^2}x}}\]
And we know that $\dfrac{1}{{\sin x}} = \csc x$
So we can write,
\[ \Rightarrow \dfrac{d}{{dx}}\left[ {\dfrac{x}{{\sin x}}} \right] = \csc x - \dfrac{{x\cos x}}{{{{\sin }^2}x}}\]
Now we can also write the second term as-
\[ \Rightarrow \dfrac{d}{{dx}}\left[ {\dfrac{x}{{\sin x}}} \right] = \csc x - \dfrac{x}{{\sin x}}.\dfrac{{\cos x}}{{\sin x}}\]
And we know that $\dfrac{1}{{\sin x}} = \csc x$ and $\dfrac{{\cos x}}{{\sin x}} = \cot x$
So on putting these values in the equation we get,
$ \Rightarrow \dfrac{d}{{dx}}\left[ {\dfrac{x}{{\sin x}}} \right] = \csc x - x\csc x.\cot x$
Now here we see that $\csc x$ is a common term so we take it common from the equation and we get,
$ \Rightarrow \dfrac{d}{{dx}}\left[ {\dfrac{x}{{\sin x}}} \right] = \csc x\left( {1 - x\cot x} \right)$
Hence the correct answer is C.
Note: We can also solve the given question this way-
Given, $\dfrac{d}{{dx}}\left( {\dfrac{x}{{\sin x}}} \right)$
We know that$\dfrac{1}{{\sin x}} = \csc x$ so we can write –
$ \Rightarrow $ $\dfrac{d}{{dx}}\left( {x\csc x} \right)$
Now on using chain rule we get,
$ \Rightarrow \csc x\dfrac{d}{{dx}}x + x\dfrac{d}{{dx}}\left( {\csc x} \right)$
And we know that,$\dfrac{{d(\csc x)}}{{dx}} = - \csc x\cot x$ and we know the differentiation of x is one.
So on using this formula we get,
$ \Rightarrow \csc x + x\left( { - \csc x\cot x} \right)$
On simplifying we get,
$ \Rightarrow \csc x - x\csc x\cot x$
Now here we see that $\csc x$ is a common term so we take it common from the equation and we get,
$ \Rightarrow \dfrac{d}{{dx}}\left[ {\dfrac{x}{{\sin x}}} \right] = \csc x\left( {1 - x\cot x} \right)$
Hence we get the same answer by using this method.
$ \Rightarrow \dfrac{d}{{dx}}\left[ {\dfrac{{f\left( x \right)}}{{g\left( x \right)}}} \right] = \dfrac{{g\left( x \right)f'\left( x \right) - f\left( x \right)g'\left( x \right)}}{{{g^2}\left( x \right)}}$
Where $f\left( x \right)$ and $g\left( x \right)$ are functions of x and $f'\left( x \right)$ is first order derivative of function$f\left( x \right)$ while $g'\left( x \right)$ is first order derivative of $g\left( x \right)$.Then use the formula$\dfrac{1}{{\sin x}} = \csc x$ and $\dfrac{{\cos x}}{{\sin x}} = \cot x$ and simplify the equation.
Complete step-by-step answer:
We have to differentiate $\dfrac{d}{{dx}}\left( {\dfrac{x}{{\sin x}}} \right)$
So we will use the formula-
$ \Rightarrow \dfrac{d}{{dx}}\left[ {\dfrac{{f\left( x \right)}}{{g\left( x \right)}}} \right] = \dfrac{{g\left( x \right)f'\left( x \right) - f\left( x \right)g'\left( x \right)}}{{{g^2}\left( x \right)}}$
Assume here $f\left( x \right) = x$ and $g\left( x \right) = \sin x$ then on using the formula we get,
$ \Rightarrow \dfrac{d}{{dx}}\left[ {\dfrac{x}{{\sin x}}} \right] = \dfrac{{\sin x\dfrac{{dx}}{{dx}} - x\dfrac{{d\left( {\sin x} \right)}}{{dx}}}}{{{{\sin }^2}x}}$
Where $f\left( x \right)$ and $g\left( x \right)$ are functions of x and $f'\left( x \right)$ is first order derivative of function$f\left( x \right)$ while $g'\left( x \right)$ is first order derivative of $g\left( x \right)$
Now we know that $\dfrac{{d\sin x}}{{dx}} = \cos x$ and differentiation of x is $1$
So on using these formulas we get,
$ \Rightarrow \dfrac{d}{{dx}}\left[ {\dfrac{x}{{\sin x}}} \right] = \dfrac{{\sin x - x\cos x}}{{{{\sin }^2}x}}$
On separating the terms we get,
\[ \Rightarrow \dfrac{d}{{dx}}\left[ {\dfrac{x}{{\sin x}}} \right] = \dfrac{{\sin x}}{{{{\sin }^2}x}} - \dfrac{{x\cos x}}{{{{\sin }^2}x}}\]
On solving further we get,
\[ \Rightarrow \dfrac{d}{{dx}}\left[ {\dfrac{x}{{\sin x}}} \right] = \dfrac{1}{{\sin x}} - \dfrac{{x\cos x}}{{{{\sin }^2}x}}\]
And we know that $\dfrac{1}{{\sin x}} = \csc x$
So we can write,
\[ \Rightarrow \dfrac{d}{{dx}}\left[ {\dfrac{x}{{\sin x}}} \right] = \csc x - \dfrac{{x\cos x}}{{{{\sin }^2}x}}\]
Now we can also write the second term as-
\[ \Rightarrow \dfrac{d}{{dx}}\left[ {\dfrac{x}{{\sin x}}} \right] = \csc x - \dfrac{x}{{\sin x}}.\dfrac{{\cos x}}{{\sin x}}\]
And we know that $\dfrac{1}{{\sin x}} = \csc x$ and $\dfrac{{\cos x}}{{\sin x}} = \cot x$
So on putting these values in the equation we get,
$ \Rightarrow \dfrac{d}{{dx}}\left[ {\dfrac{x}{{\sin x}}} \right] = \csc x - x\csc x.\cot x$
Now here we see that $\csc x$ is a common term so we take it common from the equation and we get,
$ \Rightarrow \dfrac{d}{{dx}}\left[ {\dfrac{x}{{\sin x}}} \right] = \csc x\left( {1 - x\cot x} \right)$
Hence the correct answer is C.
Note: We can also solve the given question this way-
Given, $\dfrac{d}{{dx}}\left( {\dfrac{x}{{\sin x}}} \right)$
We know that$\dfrac{1}{{\sin x}} = \csc x$ so we can write –
$ \Rightarrow $ $\dfrac{d}{{dx}}\left( {x\csc x} \right)$
Now on using chain rule we get,
$ \Rightarrow \csc x\dfrac{d}{{dx}}x + x\dfrac{d}{{dx}}\left( {\csc x} \right)$
And we know that,$\dfrac{{d(\csc x)}}{{dx}} = - \csc x\cot x$ and we know the differentiation of x is one.
So on using this formula we get,
$ \Rightarrow \csc x + x\left( { - \csc x\cot x} \right)$
On simplifying we get,
$ \Rightarrow \csc x - x\csc x\cot x$
Now here we see that $\csc x$ is a common term so we take it common from the equation and we get,
$ \Rightarrow \dfrac{d}{{dx}}\left[ {\dfrac{x}{{\sin x}}} \right] = \csc x\left( {1 - x\cot x} \right)$
Hence we get the same answer by using this method.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Trending doubts
Draw a labelled sketch of the human eye class 12 physics CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Which one of the following is a true fish A Jellyfish class 12 biology CBSE

Why is the cell called the structural and functional class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Write the difference between solid liquid and gas class 12 chemistry CBSE
