
Solve the following using the correct formula:
${}^{{\text{15}}}{{\text{C}}_{\text{3}}} + {}^{{\text{15}}}{{\text{C}}_5} + ... + {}^{{\text{15}}}{{\text{C}}_{15}}$
Answer
558.6k+ views
Hint: In this question we use the theory of permutation and combination. So, before solving this question you need to first recall the basics of this chapter. Here first we use the expansion of \[{\left( {1 + x} \right)^n}\]. And then after we will manipulate the series as asked in the question.
Formula used - ${}^{\text{n}}{{\text{C}}_{\text{r}}}{\text{ = }}\dfrac{{{\text{n}}!}}{{{\text{[r}}!{\text{(n - r)}}!{\text{]}}}}$
Complete step-by-step answer:
Given series is-
$\Rightarrow$ ${}^{{\text{15}}}{{\text{C}}_{\text{3}}} + {}^{{\text{15}}}{{\text{C}}_5} + ... + {}^{{\text{15}}}{{\text{C}}_{15}}$
As we know the expansion of \[{\left( {1 + x} \right)^n}\].
$\Rightarrow$\[{\left( {1 + x} \right)^n}\]= ${}^n{{\text{C}}_0} + {}^n{{\text{C}}_1}{x^1} + {}^n{{\text{C}}_2}{x^2} + {}^n{{\text{C}}_{\text{3}}}{x^3} + ... + {}^n{{\text{C}}_n}{x^n}$
$\Rightarrow$\[{\left( {1 + x} \right)^{15}}\]= ${}^{{\text{15}}}{{\text{C}}_0} + {}^{{\text{15}}}{{\text{C}}_1}{x^1} + {}^{{\text{15}}}{{\text{C}}_2}{x^2} + {}^{{\text{15}}}{{\text{C}}_{\text{3}}}{x^3} + ... + {}^{{\text{15}}}{{\text{C}}_{15}}{x^{15}}$ ………….. (1)
Put x=1 in equation (1), we get
$\Rightarrow$\[{\left( {1 + 1} \right)^{15}}\]=${}^{{\text{15}}}{{\text{C}}_0} + {}^{{\text{15}}}{{\text{C}}_1}{\left( 1 \right)^1} + {}^{{\text{15}}}{{\text{C}}_2}{\left( 1 \right)^2} + {}^{{\text{15}}}{{\text{C}}_{\text{3}}}{\left( 1 \right)^3} + ... + {}^{{\text{15}}}{{\text{C}}_{15}}{\left( 1 \right)^{15}}$
$\Rightarrow$${2^{15}}$= ${}^{{\text{15}}}{{\text{C}}_0} + {}^{{\text{15}}}{{\text{C}}_1}{\left( 1 \right)^1} + {}^{{\text{15}}}{{\text{C}}_2}{\left( 1 \right)^2} + {}^{{\text{15}}}{{\text{C}}_{\text{3}}}{x^3} + ... + {}^{{\text{15}}}{{\text{C}}_{15}}{\left( 1 \right)^{15}}$
$\Rightarrow$${2^{15}}$= ${}^{{\text{15}}}{{\text{C}}_0} + {}^{{\text{15}}}{{\text{C}}_1} + {}^{{\text{15}}}{{\text{C}}_2} + {}^{{\text{15}}}{{\text{C}}_{\text{3}}} + ... + {}^{{\text{15}}}{{\text{C}}_{15}}$ …………… (2)
Put x=$ - $1 in equation (1), we get
$\Rightarrow$\[{\left( {1 - 1} \right)^{15}}\]= ${}^{{\text{15}}}{{\text{C}}_0} + {}^{{\text{15}}}{{\text{C}}_1}{\left( { - 1} \right)^1} + {}^{{\text{15}}}{{\text{C}}_2}{\left( { - 1} \right)^2} + {}^{{\text{15}}}{{\text{C}}_{\text{3}}}{\left( { - 1} \right)^3} + ... + {}^{{\text{15}}}{{\text{C}}_{15}}{\left( { - 1} \right)^{15}}$
$\Rightarrow$\[{\left( {1 - 1} \right)^{15}}\]= ${}^{{\text{15}}}{{\text{C}}_0} - {}^{{\text{15}}}{{\text{C}}_1} + {}^{{\text{15}}}{{\text{C}}_2} - {}^{{\text{15}}}{{\text{C}}_{\text{3}}} + ... - {}^{{\text{15}}}{{\text{C}}_{15}}$
$\Rightarrow$0 = ${}^{{\text{15}}}{{\text{C}}_0} - {}^{{\text{15}}}{{\text{C}}_1} + {}^{{\text{15}}}{{\text{C}}_2} - {}^{{\text{15}}}{{\text{C}}_{\text{3}}} + ... - {}^{{\text{15}}}{{\text{C}}_{15}}$ …………… (3)
Now, we subtract equation (3) from equation (2), we will get-
$\Rightarrow$${2^{15}} - 0$= $2\left( {{}^{{\text{15}}}{{\text{C}}_1} + {}^{{\text{15}}}{{\text{C}}_{\text{3}}} + {}^{{\text{15}}}{{\text{C}}_5} + ... + {}^{{\text{15}}}{{\text{C}}_{15}}} \right)$
$\Rightarrow$$\dfrac{{{2^{15}}}}{2}$= $\left( {{}^{{\text{15}}}{{\text{C}}_1} + {}^{{\text{15}}}{{\text{C}}_{\text{3}}} + {}^{{\text{15}}}{{\text{C}}_5} + ... + {}^{{\text{15}}}{{\text{C}}_{15}}} \right)$
$\Rightarrow$${2^{14}}$= $\left( {{}^{{\text{15}}}{{\text{C}}_1} + {}^{{\text{15}}}{{\text{C}}_{\text{3}}} + {}^{{\text{15}}}{{\text{C}}_5} + ... + {}^{{\text{15}}}{{\text{C}}_{15}}} \right)$
As we know, ${}^{\text{n}}{{\text{C}}_{\text{r}}}{\text{ = }}\dfrac{{{\text{n}}!}}{{{\text{[r}}!{\text{(n - r)}}!{\text{]}}}}$
$\Rightarrow$${2^{14}}$= $\left( {15 + {}^{{\text{15}}}{{\text{C}}_{\text{3}}} + {}^{{\text{15}}}{{\text{C}}_5} + ... + {}^{{\text{15}}}{{\text{C}}_{15}}} \right)$ $\left[ {{}^{{\text{15}}}{{\text{C}}_{\text{1}}} = \dfrac{{15!}}{{14! \cdot 1!}}} \right]$
$\Rightarrow$${2^{14}} - 15$= $\left( {{}^{{\text{15}}}{{\text{C}}_{\text{3}}} + {}^{{\text{15}}}{{\text{C}}_5} + ... + {}^{{\text{15}}}{{\text{C}}_{15}}} \right)$
Therefore, ${}^{{\text{15}}}{{\text{C}}_{\text{3}}} + {}^{{\text{15}}}{{\text{C}}_5} + ... + {}^{{\text{15}}}{{\text{C}}_{15}}$ will be equal to ${2^{14}} - 15$.
Note:
Here, C stands for combination. Combinations are the way of selecting the objects or numbers from a group of objects or collection, in such a way that the order of the objects does not matter. For example, suppose we have a set of three letters: A, B, and C. Each possible selection would be an example of a combination.
Formula used - ${}^{\text{n}}{{\text{C}}_{\text{r}}}{\text{ = }}\dfrac{{{\text{n}}!}}{{{\text{[r}}!{\text{(n - r)}}!{\text{]}}}}$
Complete step-by-step answer:
Given series is-
$\Rightarrow$ ${}^{{\text{15}}}{{\text{C}}_{\text{3}}} + {}^{{\text{15}}}{{\text{C}}_5} + ... + {}^{{\text{15}}}{{\text{C}}_{15}}$
As we know the expansion of \[{\left( {1 + x} \right)^n}\].
$\Rightarrow$\[{\left( {1 + x} \right)^n}\]= ${}^n{{\text{C}}_0} + {}^n{{\text{C}}_1}{x^1} + {}^n{{\text{C}}_2}{x^2} + {}^n{{\text{C}}_{\text{3}}}{x^3} + ... + {}^n{{\text{C}}_n}{x^n}$
$\Rightarrow$\[{\left( {1 + x} \right)^{15}}\]= ${}^{{\text{15}}}{{\text{C}}_0} + {}^{{\text{15}}}{{\text{C}}_1}{x^1} + {}^{{\text{15}}}{{\text{C}}_2}{x^2} + {}^{{\text{15}}}{{\text{C}}_{\text{3}}}{x^3} + ... + {}^{{\text{15}}}{{\text{C}}_{15}}{x^{15}}$ ………….. (1)
Put x=1 in equation (1), we get
$\Rightarrow$\[{\left( {1 + 1} \right)^{15}}\]=${}^{{\text{15}}}{{\text{C}}_0} + {}^{{\text{15}}}{{\text{C}}_1}{\left( 1 \right)^1} + {}^{{\text{15}}}{{\text{C}}_2}{\left( 1 \right)^2} + {}^{{\text{15}}}{{\text{C}}_{\text{3}}}{\left( 1 \right)^3} + ... + {}^{{\text{15}}}{{\text{C}}_{15}}{\left( 1 \right)^{15}}$
$\Rightarrow$${2^{15}}$= ${}^{{\text{15}}}{{\text{C}}_0} + {}^{{\text{15}}}{{\text{C}}_1}{\left( 1 \right)^1} + {}^{{\text{15}}}{{\text{C}}_2}{\left( 1 \right)^2} + {}^{{\text{15}}}{{\text{C}}_{\text{3}}}{x^3} + ... + {}^{{\text{15}}}{{\text{C}}_{15}}{\left( 1 \right)^{15}}$
$\Rightarrow$${2^{15}}$= ${}^{{\text{15}}}{{\text{C}}_0} + {}^{{\text{15}}}{{\text{C}}_1} + {}^{{\text{15}}}{{\text{C}}_2} + {}^{{\text{15}}}{{\text{C}}_{\text{3}}} + ... + {}^{{\text{15}}}{{\text{C}}_{15}}$ …………… (2)
Put x=$ - $1 in equation (1), we get
$\Rightarrow$\[{\left( {1 - 1} \right)^{15}}\]= ${}^{{\text{15}}}{{\text{C}}_0} + {}^{{\text{15}}}{{\text{C}}_1}{\left( { - 1} \right)^1} + {}^{{\text{15}}}{{\text{C}}_2}{\left( { - 1} \right)^2} + {}^{{\text{15}}}{{\text{C}}_{\text{3}}}{\left( { - 1} \right)^3} + ... + {}^{{\text{15}}}{{\text{C}}_{15}}{\left( { - 1} \right)^{15}}$
$\Rightarrow$\[{\left( {1 - 1} \right)^{15}}\]= ${}^{{\text{15}}}{{\text{C}}_0} - {}^{{\text{15}}}{{\text{C}}_1} + {}^{{\text{15}}}{{\text{C}}_2} - {}^{{\text{15}}}{{\text{C}}_{\text{3}}} + ... - {}^{{\text{15}}}{{\text{C}}_{15}}$
$\Rightarrow$0 = ${}^{{\text{15}}}{{\text{C}}_0} - {}^{{\text{15}}}{{\text{C}}_1} + {}^{{\text{15}}}{{\text{C}}_2} - {}^{{\text{15}}}{{\text{C}}_{\text{3}}} + ... - {}^{{\text{15}}}{{\text{C}}_{15}}$ …………… (3)
Now, we subtract equation (3) from equation (2), we will get-
$\Rightarrow$${2^{15}} - 0$= $2\left( {{}^{{\text{15}}}{{\text{C}}_1} + {}^{{\text{15}}}{{\text{C}}_{\text{3}}} + {}^{{\text{15}}}{{\text{C}}_5} + ... + {}^{{\text{15}}}{{\text{C}}_{15}}} \right)$
$\Rightarrow$$\dfrac{{{2^{15}}}}{2}$= $\left( {{}^{{\text{15}}}{{\text{C}}_1} + {}^{{\text{15}}}{{\text{C}}_{\text{3}}} + {}^{{\text{15}}}{{\text{C}}_5} + ... + {}^{{\text{15}}}{{\text{C}}_{15}}} \right)$
$\Rightarrow$${2^{14}}$= $\left( {{}^{{\text{15}}}{{\text{C}}_1} + {}^{{\text{15}}}{{\text{C}}_{\text{3}}} + {}^{{\text{15}}}{{\text{C}}_5} + ... + {}^{{\text{15}}}{{\text{C}}_{15}}} \right)$
As we know, ${}^{\text{n}}{{\text{C}}_{\text{r}}}{\text{ = }}\dfrac{{{\text{n}}!}}{{{\text{[r}}!{\text{(n - r)}}!{\text{]}}}}$
$\Rightarrow$${2^{14}}$= $\left( {15 + {}^{{\text{15}}}{{\text{C}}_{\text{3}}} + {}^{{\text{15}}}{{\text{C}}_5} + ... + {}^{{\text{15}}}{{\text{C}}_{15}}} \right)$ $\left[ {{}^{{\text{15}}}{{\text{C}}_{\text{1}}} = \dfrac{{15!}}{{14! \cdot 1!}}} \right]$
$\Rightarrow$${2^{14}} - 15$= $\left( {{}^{{\text{15}}}{{\text{C}}_{\text{3}}} + {}^{{\text{15}}}{{\text{C}}_5} + ... + {}^{{\text{15}}}{{\text{C}}_{15}}} \right)$
Therefore, ${}^{{\text{15}}}{{\text{C}}_{\text{3}}} + {}^{{\text{15}}}{{\text{C}}_5} + ... + {}^{{\text{15}}}{{\text{C}}_{15}}$ will be equal to ${2^{14}} - 15$.
Note:
Here, C stands for combination. Combinations are the way of selecting the objects or numbers from a group of objects or collection, in such a way that the order of the objects does not matter. For example, suppose we have a set of three letters: A, B, and C. Each possible selection would be an example of a combination.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

