
Solve the following trigonometric expression
\[\sin \theta + \sin 2\theta + \sin 3\theta + \sin 4\theta = 0\].
Answer
618.6k+ views
Hint: In the questions where angles are given in terms of \[\theta \], we need to find out the formulas that can be used to solve these. After simplifying the giving equation use the properties of sinθ and cosθ and then proceed further.
Complete step-by-step answer:
\[(\sin 4x + \sin x) + (\sin 3x + \sin 2x) = 0\]
Using the formula
\[\sin \alpha + \sin \beta = 2\sin \left( {\dfrac{{\alpha + \beta }}{2}} \right)\cos \left( {\dfrac{{\alpha - \beta }}{2}} \right)\]
So,\[2\sin \left( {\dfrac{{4x + x}}{2}} \right)\cos \left( {\dfrac{{4x - x}}{2}} \right) + 2\sin \left( {\dfrac{{3x + 2x}}{2}} \right)\cos \left( {\dfrac{{3x - 2x}}{2}} \right) = 0\]
\[ \Rightarrow 2\sin \left( {\dfrac{5}{2}x} \right)\cos \left( {\dfrac{3}{2}x} \right) + 2\sin \left( {\dfrac{5}{2}x} \right)\cos \left( {\dfrac{1}{2}x} \right) = 0\]
\[ \Rightarrow 2\sin \left( {\dfrac{5}{2}x} \right)\left[ {\cos \left( {\dfrac{3}{2}x} \right) + \cos \left( {\dfrac{1}{2}x} \right)} \right] = 0\]
Now using
\[\cos \alpha + \cos \beta = 2\cos \left( {\dfrac{{\alpha + \beta }}{2}} \right)\cos \left( {\dfrac{{\alpha - \beta }}{2}} \right)\] we get
\[ \Rightarrow 2\sin \left( {\dfrac{5}{2}x} \right)2\cos \left( {\dfrac{{\dfrac{3}{2}x + \dfrac{1}{2}x}}{2}} \right)\cos \left( {\dfrac{{\dfrac{3}{2}x - \dfrac{1}{2}x}}{2}} \right) = 0\]
\[ \Rightarrow 4\sin \left( {\dfrac{5}{2}x} \right)\cos x\cos \left( {\dfrac{x}{2}} \right) = 0\]
Then:
\[ \Rightarrow \sin \left( {\dfrac{5}{2}x} \right) = 0 \Rightarrow \dfrac{5}{2}x = K\pi \]
\[ \Rightarrow x = \dfrac{2}{5}k\pi \]
Similarly,
\[ \Rightarrow \cos x = 0 \Rightarrow x = \dfrac{\pi }{2} + k\pi \]
∴ \[\cos \left( {\dfrac{x}{2}} \right) = 0\]
\[ \Rightarrow \dfrac{x}{2} = \dfrac{\pi }{2} + k\pi \]
\[ \Rightarrow x = \pi + 2k\pi \]
Note: Following are the properties of sinθ and cosθ. While solving using these formulas don’t be confused with - and + signs (Major mistakes are made by this confusion). A good command over trigonometric identities and formulas will be an added advantage.
\[
\sin \alpha + \sin \beta = 2\sin \left( {\dfrac{{\alpha + \beta }}{2}} \right)\cos \left( {\dfrac{{\alpha - \beta }}{2}} \right) \\
\cos \alpha + \cos \beta = 2\cos \left( {\dfrac{{\alpha + \beta }}{2}} \right)\cos \left( {\dfrac{{\alpha - \beta }}{2}} \right) \\
\sin \alpha - \sin \beta = 2\cos \left( {\dfrac{{\alpha + \beta }}{2}} \right)\sin \left( {\dfrac{{\alpha - \beta }}{2}} \right) \\
\cos \alpha - \cos \beta = - 2\sin \left( {\dfrac{{\alpha + \beta }}{2}} \right)\sin \left( {\dfrac{{\alpha - \beta }}{2}} \right) \\
\]
Complete step-by-step answer:
\[(\sin 4x + \sin x) + (\sin 3x + \sin 2x) = 0\]
Using the formula
\[\sin \alpha + \sin \beta = 2\sin \left( {\dfrac{{\alpha + \beta }}{2}} \right)\cos \left( {\dfrac{{\alpha - \beta }}{2}} \right)\]
So,\[2\sin \left( {\dfrac{{4x + x}}{2}} \right)\cos \left( {\dfrac{{4x - x}}{2}} \right) + 2\sin \left( {\dfrac{{3x + 2x}}{2}} \right)\cos \left( {\dfrac{{3x - 2x}}{2}} \right) = 0\]
\[ \Rightarrow 2\sin \left( {\dfrac{5}{2}x} \right)\cos \left( {\dfrac{3}{2}x} \right) + 2\sin \left( {\dfrac{5}{2}x} \right)\cos \left( {\dfrac{1}{2}x} \right) = 0\]
\[ \Rightarrow 2\sin \left( {\dfrac{5}{2}x} \right)\left[ {\cos \left( {\dfrac{3}{2}x} \right) + \cos \left( {\dfrac{1}{2}x} \right)} \right] = 0\]
Now using
\[\cos \alpha + \cos \beta = 2\cos \left( {\dfrac{{\alpha + \beta }}{2}} \right)\cos \left( {\dfrac{{\alpha - \beta }}{2}} \right)\] we get
\[ \Rightarrow 2\sin \left( {\dfrac{5}{2}x} \right)2\cos \left( {\dfrac{{\dfrac{3}{2}x + \dfrac{1}{2}x}}{2}} \right)\cos \left( {\dfrac{{\dfrac{3}{2}x - \dfrac{1}{2}x}}{2}} \right) = 0\]
\[ \Rightarrow 4\sin \left( {\dfrac{5}{2}x} \right)\cos x\cos \left( {\dfrac{x}{2}} \right) = 0\]
Then:
\[ \Rightarrow \sin \left( {\dfrac{5}{2}x} \right) = 0 \Rightarrow \dfrac{5}{2}x = K\pi \]
\[ \Rightarrow x = \dfrac{2}{5}k\pi \]
Similarly,
\[ \Rightarrow \cos x = 0 \Rightarrow x = \dfrac{\pi }{2} + k\pi \]
∴ \[\cos \left( {\dfrac{x}{2}} \right) = 0\]
\[ \Rightarrow \dfrac{x}{2} = \dfrac{\pi }{2} + k\pi \]
\[ \Rightarrow x = \pi + 2k\pi \]
Note: Following are the properties of sinθ and cosθ. While solving using these formulas don’t be confused with - and + signs (Major mistakes are made by this confusion). A good command over trigonometric identities and formulas will be an added advantage.
\[
\sin \alpha + \sin \beta = 2\sin \left( {\dfrac{{\alpha + \beta }}{2}} \right)\cos \left( {\dfrac{{\alpha - \beta }}{2}} \right) \\
\cos \alpha + \cos \beta = 2\cos \left( {\dfrac{{\alpha + \beta }}{2}} \right)\cos \left( {\dfrac{{\alpha - \beta }}{2}} \right) \\
\sin \alpha - \sin \beta = 2\cos \left( {\dfrac{{\alpha + \beta }}{2}} \right)\sin \left( {\dfrac{{\alpha - \beta }}{2}} \right) \\
\cos \alpha - \cos \beta = - 2\sin \left( {\dfrac{{\alpha + \beta }}{2}} \right)\sin \left( {\dfrac{{\alpha - \beta }}{2}} \right) \\
\]
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

