
Solve the following trigonometric expression
\[\sin \theta + \sin 2\theta + \sin 3\theta + \sin 4\theta = 0\].
Answer
605.1k+ views
Hint: In the questions where angles are given in terms of \[\theta \], we need to find out the formulas that can be used to solve these. After simplifying the giving equation use the properties of sinθ and cosθ and then proceed further.
Complete step-by-step answer:
\[(\sin 4x + \sin x) + (\sin 3x + \sin 2x) = 0\]
Using the formula
\[\sin \alpha + \sin \beta = 2\sin \left( {\dfrac{{\alpha + \beta }}{2}} \right)\cos \left( {\dfrac{{\alpha - \beta }}{2}} \right)\]
So,\[2\sin \left( {\dfrac{{4x + x}}{2}} \right)\cos \left( {\dfrac{{4x - x}}{2}} \right) + 2\sin \left( {\dfrac{{3x + 2x}}{2}} \right)\cos \left( {\dfrac{{3x - 2x}}{2}} \right) = 0\]
\[ \Rightarrow 2\sin \left( {\dfrac{5}{2}x} \right)\cos \left( {\dfrac{3}{2}x} \right) + 2\sin \left( {\dfrac{5}{2}x} \right)\cos \left( {\dfrac{1}{2}x} \right) = 0\]
\[ \Rightarrow 2\sin \left( {\dfrac{5}{2}x} \right)\left[ {\cos \left( {\dfrac{3}{2}x} \right) + \cos \left( {\dfrac{1}{2}x} \right)} \right] = 0\]
Now using
\[\cos \alpha + \cos \beta = 2\cos \left( {\dfrac{{\alpha + \beta }}{2}} \right)\cos \left( {\dfrac{{\alpha - \beta }}{2}} \right)\] we get
\[ \Rightarrow 2\sin \left( {\dfrac{5}{2}x} \right)2\cos \left( {\dfrac{{\dfrac{3}{2}x + \dfrac{1}{2}x}}{2}} \right)\cos \left( {\dfrac{{\dfrac{3}{2}x - \dfrac{1}{2}x}}{2}} \right) = 0\]
\[ \Rightarrow 4\sin \left( {\dfrac{5}{2}x} \right)\cos x\cos \left( {\dfrac{x}{2}} \right) = 0\]
Then:
\[ \Rightarrow \sin \left( {\dfrac{5}{2}x} \right) = 0 \Rightarrow \dfrac{5}{2}x = K\pi \]
\[ \Rightarrow x = \dfrac{2}{5}k\pi \]
Similarly,
\[ \Rightarrow \cos x = 0 \Rightarrow x = \dfrac{\pi }{2} + k\pi \]
∴ \[\cos \left( {\dfrac{x}{2}} \right) = 0\]
\[ \Rightarrow \dfrac{x}{2} = \dfrac{\pi }{2} + k\pi \]
\[ \Rightarrow x = \pi + 2k\pi \]
Note: Following are the properties of sinθ and cosθ. While solving using these formulas don’t be confused with - and + signs (Major mistakes are made by this confusion). A good command over trigonometric identities and formulas will be an added advantage.
\[
\sin \alpha + \sin \beta = 2\sin \left( {\dfrac{{\alpha + \beta }}{2}} \right)\cos \left( {\dfrac{{\alpha - \beta }}{2}} \right) \\
\cos \alpha + \cos \beta = 2\cos \left( {\dfrac{{\alpha + \beta }}{2}} \right)\cos \left( {\dfrac{{\alpha - \beta }}{2}} \right) \\
\sin \alpha - \sin \beta = 2\cos \left( {\dfrac{{\alpha + \beta }}{2}} \right)\sin \left( {\dfrac{{\alpha - \beta }}{2}} \right) \\
\cos \alpha - \cos \beta = - 2\sin \left( {\dfrac{{\alpha + \beta }}{2}} \right)\sin \left( {\dfrac{{\alpha - \beta }}{2}} \right) \\
\]
Complete step-by-step answer:
\[(\sin 4x + \sin x) + (\sin 3x + \sin 2x) = 0\]
Using the formula
\[\sin \alpha + \sin \beta = 2\sin \left( {\dfrac{{\alpha + \beta }}{2}} \right)\cos \left( {\dfrac{{\alpha - \beta }}{2}} \right)\]
So,\[2\sin \left( {\dfrac{{4x + x}}{2}} \right)\cos \left( {\dfrac{{4x - x}}{2}} \right) + 2\sin \left( {\dfrac{{3x + 2x}}{2}} \right)\cos \left( {\dfrac{{3x - 2x}}{2}} \right) = 0\]
\[ \Rightarrow 2\sin \left( {\dfrac{5}{2}x} \right)\cos \left( {\dfrac{3}{2}x} \right) + 2\sin \left( {\dfrac{5}{2}x} \right)\cos \left( {\dfrac{1}{2}x} \right) = 0\]
\[ \Rightarrow 2\sin \left( {\dfrac{5}{2}x} \right)\left[ {\cos \left( {\dfrac{3}{2}x} \right) + \cos \left( {\dfrac{1}{2}x} \right)} \right] = 0\]
Now using
\[\cos \alpha + \cos \beta = 2\cos \left( {\dfrac{{\alpha + \beta }}{2}} \right)\cos \left( {\dfrac{{\alpha - \beta }}{2}} \right)\] we get
\[ \Rightarrow 2\sin \left( {\dfrac{5}{2}x} \right)2\cos \left( {\dfrac{{\dfrac{3}{2}x + \dfrac{1}{2}x}}{2}} \right)\cos \left( {\dfrac{{\dfrac{3}{2}x - \dfrac{1}{2}x}}{2}} \right) = 0\]
\[ \Rightarrow 4\sin \left( {\dfrac{5}{2}x} \right)\cos x\cos \left( {\dfrac{x}{2}} \right) = 0\]
Then:
\[ \Rightarrow \sin \left( {\dfrac{5}{2}x} \right) = 0 \Rightarrow \dfrac{5}{2}x = K\pi \]
\[ \Rightarrow x = \dfrac{2}{5}k\pi \]
Similarly,
\[ \Rightarrow \cos x = 0 \Rightarrow x = \dfrac{\pi }{2} + k\pi \]
∴ \[\cos \left( {\dfrac{x}{2}} \right) = 0\]
\[ \Rightarrow \dfrac{x}{2} = \dfrac{\pi }{2} + k\pi \]
\[ \Rightarrow x = \pi + 2k\pi \]
Note: Following are the properties of sinθ and cosθ. While solving using these formulas don’t be confused with - and + signs (Major mistakes are made by this confusion). A good command over trigonometric identities and formulas will be an added advantage.
\[
\sin \alpha + \sin \beta = 2\sin \left( {\dfrac{{\alpha + \beta }}{2}} \right)\cos \left( {\dfrac{{\alpha - \beta }}{2}} \right) \\
\cos \alpha + \cos \beta = 2\cos \left( {\dfrac{{\alpha + \beta }}{2}} \right)\cos \left( {\dfrac{{\alpha - \beta }}{2}} \right) \\
\sin \alpha - \sin \beta = 2\cos \left( {\dfrac{{\alpha + \beta }}{2}} \right)\sin \left( {\dfrac{{\alpha - \beta }}{2}} \right) \\
\cos \alpha - \cos \beta = - 2\sin \left( {\dfrac{{\alpha + \beta }}{2}} \right)\sin \left( {\dfrac{{\alpha - \beta }}{2}} \right) \\
\]
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

