
Solve the following trigonometric expression
\[\sin \theta + \sin 2\theta + \sin 3\theta + \sin 4\theta = 0\].
Answer
522.9k+ views
Hint: In the questions where angles are given in terms of \[\theta \], we need to find out the formulas that can be used to solve these. After simplifying the giving equation use the properties of sinθ and cosθ and then proceed further.
Complete step-by-step answer:
\[(\sin 4x + \sin x) + (\sin 3x + \sin 2x) = 0\]
Using the formula
\[\sin \alpha + \sin \beta = 2\sin \left( {\dfrac{{\alpha + \beta }}{2}} \right)\cos \left( {\dfrac{{\alpha - \beta }}{2}} \right)\]
So,\[2\sin \left( {\dfrac{{4x + x}}{2}} \right)\cos \left( {\dfrac{{4x - x}}{2}} \right) + 2\sin \left( {\dfrac{{3x + 2x}}{2}} \right)\cos \left( {\dfrac{{3x - 2x}}{2}} \right) = 0\]
\[ \Rightarrow 2\sin \left( {\dfrac{5}{2}x} \right)\cos \left( {\dfrac{3}{2}x} \right) + 2\sin \left( {\dfrac{5}{2}x} \right)\cos \left( {\dfrac{1}{2}x} \right) = 0\]
\[ \Rightarrow 2\sin \left( {\dfrac{5}{2}x} \right)\left[ {\cos \left( {\dfrac{3}{2}x} \right) + \cos \left( {\dfrac{1}{2}x} \right)} \right] = 0\]
Now using
\[\cos \alpha + \cos \beta = 2\cos \left( {\dfrac{{\alpha + \beta }}{2}} \right)\cos \left( {\dfrac{{\alpha - \beta }}{2}} \right)\] we get
\[ \Rightarrow 2\sin \left( {\dfrac{5}{2}x} \right)2\cos \left( {\dfrac{{\dfrac{3}{2}x + \dfrac{1}{2}x}}{2}} \right)\cos \left( {\dfrac{{\dfrac{3}{2}x - \dfrac{1}{2}x}}{2}} \right) = 0\]
\[ \Rightarrow 4\sin \left( {\dfrac{5}{2}x} \right)\cos x\cos \left( {\dfrac{x}{2}} \right) = 0\]
Then:
\[ \Rightarrow \sin \left( {\dfrac{5}{2}x} \right) = 0 \Rightarrow \dfrac{5}{2}x = K\pi \]
\[ \Rightarrow x = \dfrac{2}{5}k\pi \]
Similarly,
\[ \Rightarrow \cos x = 0 \Rightarrow x = \dfrac{\pi }{2} + k\pi \]
∴ \[\cos \left( {\dfrac{x}{2}} \right) = 0\]
\[ \Rightarrow \dfrac{x}{2} = \dfrac{\pi }{2} + k\pi \]
\[ \Rightarrow x = \pi + 2k\pi \]
Note: Following are the properties of sinθ and cosθ. While solving using these formulas don’t be confused with - and + signs (Major mistakes are made by this confusion). A good command over trigonometric identities and formulas will be an added advantage.
\[
\sin \alpha + \sin \beta = 2\sin \left( {\dfrac{{\alpha + \beta }}{2}} \right)\cos \left( {\dfrac{{\alpha - \beta }}{2}} \right) \\
\cos \alpha + \cos \beta = 2\cos \left( {\dfrac{{\alpha + \beta }}{2}} \right)\cos \left( {\dfrac{{\alpha - \beta }}{2}} \right) \\
\sin \alpha - \sin \beta = 2\cos \left( {\dfrac{{\alpha + \beta }}{2}} \right)\sin \left( {\dfrac{{\alpha - \beta }}{2}} \right) \\
\cos \alpha - \cos \beta = - 2\sin \left( {\dfrac{{\alpha + \beta }}{2}} \right)\sin \left( {\dfrac{{\alpha - \beta }}{2}} \right) \\
\]
Complete step-by-step answer:
\[(\sin 4x + \sin x) + (\sin 3x + \sin 2x) = 0\]
Using the formula
\[\sin \alpha + \sin \beta = 2\sin \left( {\dfrac{{\alpha + \beta }}{2}} \right)\cos \left( {\dfrac{{\alpha - \beta }}{2}} \right)\]
So,\[2\sin \left( {\dfrac{{4x + x}}{2}} \right)\cos \left( {\dfrac{{4x - x}}{2}} \right) + 2\sin \left( {\dfrac{{3x + 2x}}{2}} \right)\cos \left( {\dfrac{{3x - 2x}}{2}} \right) = 0\]
\[ \Rightarrow 2\sin \left( {\dfrac{5}{2}x} \right)\cos \left( {\dfrac{3}{2}x} \right) + 2\sin \left( {\dfrac{5}{2}x} \right)\cos \left( {\dfrac{1}{2}x} \right) = 0\]
\[ \Rightarrow 2\sin \left( {\dfrac{5}{2}x} \right)\left[ {\cos \left( {\dfrac{3}{2}x} \right) + \cos \left( {\dfrac{1}{2}x} \right)} \right] = 0\]
Now using
\[\cos \alpha + \cos \beta = 2\cos \left( {\dfrac{{\alpha + \beta }}{2}} \right)\cos \left( {\dfrac{{\alpha - \beta }}{2}} \right)\] we get
\[ \Rightarrow 2\sin \left( {\dfrac{5}{2}x} \right)2\cos \left( {\dfrac{{\dfrac{3}{2}x + \dfrac{1}{2}x}}{2}} \right)\cos \left( {\dfrac{{\dfrac{3}{2}x - \dfrac{1}{2}x}}{2}} \right) = 0\]
\[ \Rightarrow 4\sin \left( {\dfrac{5}{2}x} \right)\cos x\cos \left( {\dfrac{x}{2}} \right) = 0\]
Then:
\[ \Rightarrow \sin \left( {\dfrac{5}{2}x} \right) = 0 \Rightarrow \dfrac{5}{2}x = K\pi \]
\[ \Rightarrow x = \dfrac{2}{5}k\pi \]
Similarly,
\[ \Rightarrow \cos x = 0 \Rightarrow x = \dfrac{\pi }{2} + k\pi \]
∴ \[\cos \left( {\dfrac{x}{2}} \right) = 0\]
\[ \Rightarrow \dfrac{x}{2} = \dfrac{\pi }{2} + k\pi \]
\[ \Rightarrow x = \pi + 2k\pi \]
Note: Following are the properties of sinθ and cosθ. While solving using these formulas don’t be confused with - and + signs (Major mistakes are made by this confusion). A good command over trigonometric identities and formulas will be an added advantage.
\[
\sin \alpha + \sin \beta = 2\sin \left( {\dfrac{{\alpha + \beta }}{2}} \right)\cos \left( {\dfrac{{\alpha - \beta }}{2}} \right) \\
\cos \alpha + \cos \beta = 2\cos \left( {\dfrac{{\alpha + \beta }}{2}} \right)\cos \left( {\dfrac{{\alpha - \beta }}{2}} \right) \\
\sin \alpha - \sin \beta = 2\cos \left( {\dfrac{{\alpha + \beta }}{2}} \right)\sin \left( {\dfrac{{\alpha - \beta }}{2}} \right) \\
\cos \alpha - \cos \beta = - 2\sin \left( {\dfrac{{\alpha + \beta }}{2}} \right)\sin \left( {\dfrac{{\alpha - \beta }}{2}} \right) \\
\]
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Trending doubts
Is Cellular respiration an Oxidation or Reduction class 11 chemistry CBSE

Raindrops are spherical because of A Gravitational class 11 physics CBSE

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

Why is steel more elastic than rubber class 11 physics CBSE

Explain why a There is no atmosphere on the moon b class 11 physics CBSE

Which of the following is most electronegative A Carbon class 11 chemistry CBSE
