
Solve the following systems of equations:
$
\dfrac{x}{3} + \dfrac{y}{4} = 11 \\
\dfrac{{5x}}{6} - \dfrac{y}{3} = - 7 \\
$
Answer
598.2k+ views
Hint: We will use the method of elimination by equating the coefficients in order to solve this question. After doing so, we will also use subtraction like in the solution below to find out the value of x and y.
Complete step-by-step answer:
According to the question we have to equations i.e. $\dfrac{x}{3} + \dfrac{y}{4} = 11,\dfrac{{5x}}{6} - \dfrac{y}{3} = - 7$
Hence, the equation can be rewritten as :
Equation $\left( 1 \right):4x + 3y = 132$
Equation$\left( 2 \right):5x - 2y = - 42$
Now to make the coefficient equal of any variable of the two equation multiply equation $\left( 1 \right)$by $2$ and equation $\left( 2 \right)$ by $3$, we get
Equation $\left( 1 \right)\; \times \;2:8x + 6y = 264$
Equation $\left( 2 \right)\; \times \;3\;:15x - 6y = - 126$
Add two equations;
$
\Rightarrow 23x = 138 \\
\Rightarrow x = 6 \\
$
Substitute the value of $x$ in equation $\left( 1 \right)$, we get;
$ \Rightarrow 3y = 108$
$ \Rightarrow y = 36$
Note: In such types of questions there are four ways of solving the system of linear equations in two variables i.e Graphical Method , Elimination Method , Substitution Method and By Cross – Multiplication Method.
Complete step-by-step answer:
According to the question we have to equations i.e. $\dfrac{x}{3} + \dfrac{y}{4} = 11,\dfrac{{5x}}{6} - \dfrac{y}{3} = - 7$
Hence, the equation can be rewritten as :
Equation $\left( 1 \right):4x + 3y = 132$
Equation$\left( 2 \right):5x - 2y = - 42$
Now to make the coefficient equal of any variable of the two equation multiply equation $\left( 1 \right)$by $2$ and equation $\left( 2 \right)$ by $3$, we get
Equation $\left( 1 \right)\; \times \;2:8x + 6y = 264$
Equation $\left( 2 \right)\; \times \;3\;:15x - 6y = - 126$
Add two equations;
$
\Rightarrow 23x = 138 \\
\Rightarrow x = 6 \\
$
Substitute the value of $x$ in equation $\left( 1 \right)$, we get;
$ \Rightarrow 3y = 108$
$ \Rightarrow y = 36$
Note: In such types of questions there are four ways of solving the system of linear equations in two variables i.e Graphical Method , Elimination Method , Substitution Method and By Cross – Multiplication Method.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

