
Solve the following:
$\sin \left( {40} \right) + \cos \left( {50} \right) + \sin \left( {80} \right) - \cos \left( {190} \right) = ?$
Answer
489.9k+ views
Hint: To do this question you should have good knowledge of trigonometric formulas. Formulas are the base of trigonometry. In this question we should use the formula of $\sin C + \sin D = 2\sin \dfrac{{C + D}}{2}\cos \dfrac{{C - D}}{2}$, $\cos \left( {90 - \theta } \right) = \sin \theta $ and $\cos (270 - \theta ) = - \sin \left( \theta \right)$.
Complete step by step answer:
In the above question, we have
$ \Rightarrow \sin \left( {40} \right) + \cos \left( {50} \right) + \sin \left( {80} \right) - \cos \left( {190} \right)$
We can also write $\cos \left( {50} \right) = \cos \left( {90 - 40} \right)$ and $\cos \left( {190} \right) = \cos \left( {270 - 80} \right)$.
Now,
$ \Rightarrow \sin \left( {40} \right) + \cos \left( {90 - 40} \right) + \sin \left( {80} \right) - \cos \left( {270 - 80} \right)$
We know that $\cos \left( {90 - \theta } \right) = \sin \theta $ and also $\cos (270 - \theta ) = - \sin \left( \theta \right)$.
$ \Rightarrow \sin \left( {40} \right) + \sin \left( {40} \right) + \sin \left( {80} \right) + \sin \left( {80} \right)$
Now we will add the terms having the same angle of sine function.
$ \Rightarrow 2\sin \left( {40} \right) + 2\sin \left( {80} \right)$
Taking two common out from the equation
$ \Rightarrow 2\left( {\sin \left( {40} \right) + \sin \left( {80} \right)} \right)$
Now we will use the identity $\sin C + \sin D = 2\sin \dfrac{{C + D}}{2}\cos \dfrac{{C - D}}{2}$ in the above equation.
$ \Rightarrow 2\left( {2\sin \dfrac{{80 + 40}}{2}\cos \dfrac{{80 - 40}}{2}} \right)$
$ \Rightarrow 2\left( {2\sin \dfrac{{120}}{2}\cos \dfrac{{40}}{2}} \right)$
$ \Rightarrow 4\sin 60\cos 20$
On simplification, we get
$ \Rightarrow 2\sqrt 3 \cos \left( {20} \right)$
Therefore, the value of $\sin \left( {40} \right) + \cos \left( {50} \right) + \sin \left( {80} \right) - \cos \left( {190} \right) = \,2\sqrt 3 \cos \left( {20} \right)$.
Note:
There is one more method to answer this question. in that method we will write $\cos \left( {190} \right) = \cos \left( {180 + 10} \right)$ and on further calculation we will write it as $\cos \left( {10} \right) = \cos \left( {90 - 80} \right)$ and it will convert into sine function and then we will get to the final result which will also in the form of sine function.
Complete step by step answer:
In the above question, we have
$ \Rightarrow \sin \left( {40} \right) + \cos \left( {50} \right) + \sin \left( {80} \right) - \cos \left( {190} \right)$
We can also write $\cos \left( {50} \right) = \cos \left( {90 - 40} \right)$ and $\cos \left( {190} \right) = \cos \left( {270 - 80} \right)$.
Now,
$ \Rightarrow \sin \left( {40} \right) + \cos \left( {90 - 40} \right) + \sin \left( {80} \right) - \cos \left( {270 - 80} \right)$
We know that $\cos \left( {90 - \theta } \right) = \sin \theta $ and also $\cos (270 - \theta ) = - \sin \left( \theta \right)$.
$ \Rightarrow \sin \left( {40} \right) + \sin \left( {40} \right) + \sin \left( {80} \right) + \sin \left( {80} \right)$
Now we will add the terms having the same angle of sine function.
$ \Rightarrow 2\sin \left( {40} \right) + 2\sin \left( {80} \right)$
Taking two common out from the equation
$ \Rightarrow 2\left( {\sin \left( {40} \right) + \sin \left( {80} \right)} \right)$
Now we will use the identity $\sin C + \sin D = 2\sin \dfrac{{C + D}}{2}\cos \dfrac{{C - D}}{2}$ in the above equation.
$ \Rightarrow 2\left( {2\sin \dfrac{{80 + 40}}{2}\cos \dfrac{{80 - 40}}{2}} \right)$
$ \Rightarrow 2\left( {2\sin \dfrac{{120}}{2}\cos \dfrac{{40}}{2}} \right)$
$ \Rightarrow 4\sin 60\cos 20$
On simplification, we get
$ \Rightarrow 2\sqrt 3 \cos \left( {20} \right)$
Therefore, the value of $\sin \left( {40} \right) + \cos \left( {50} \right) + \sin \left( {80} \right) - \cos \left( {190} \right) = \,2\sqrt 3 \cos \left( {20} \right)$.
Note:
There is one more method to answer this question. in that method we will write $\cos \left( {190} \right) = \cos \left( {180 + 10} \right)$ and on further calculation we will write it as $\cos \left( {10} \right) = \cos \left( {90 - 80} \right)$ and it will convert into sine function and then we will get to the final result which will also in the form of sine function.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

