
Solve the following quadratic equation by factorization method:
${\left( {{\text{a + b}}} \right)^2}{{\text{x}}^2} - 4{\text{abx - }}{\left( {{\text{a - b}}} \right)^2} = 0$
Answer
510.6k+ views
Hint: In order to solve the following quadratic equation, we have to divide the entire equation by a term of the equation. Then we express the equation as one term is equal to the other. Later we express both sides of the equation as square roots and solve for the value of x. This gives us the factors of the given equation.
Complete step by step answer:
Given data,
To factorize${\left( {{\text{a + b}}} \right)^2}{{\text{x}}^2} - 4{\text{abx - }}{\left( {{\text{a - b}}} \right)^2} = 0$.
We factorize the given equation by the factorization method as follows:
${\left( {{\text{a + b}}} \right)^2}{{\text{x}}^2} - 4{\text{abx - }}{\left( {{\text{a - b}}} \right)^2} = 0$
Let us divide the entire equation by the term${\left( {{\text{a + b}}} \right)^2}$, we get
\[
\Rightarrow {{\text{x}}^2} - \dfrac{{4{\text{abx}}}}{{{{\left( {{\text{a + b}}} \right)}^2}}}{\text{ - }}\dfrac{{{{\left( {{\text{a - b}}} \right)}^2}}}{{{{\left( {{\text{a + b}}} \right)}^2}}} = 0 \\
\Rightarrow {{\text{x}}^2} - \dfrac{{4{\text{ab}}}}{{{{\left( {{\text{a + b}}} \right)}^2}}}{\text{x = }}\dfrac{{{{\left( {{\text{a - b}}} \right)}^2}}}{{{{\left( {{\text{a + b}}} \right)}^2}}} \\
\]
Now let us add the term$\dfrac{{{\text{4}}{{\text{a}}^2}{{\text{b}}^2}}}{{{{\left( {{\text{a + b}}} \right)}^4}}}$on both sides, we get
\[ \Rightarrow {{\text{x}}^2} - \dfrac{{4{\text{ab}}}}{{{{\left( {{\text{a + b}}} \right)}^2}}}{\text{x + }}\dfrac{{{\text{4}}{{\text{a}}^2}{{\text{b}}^2}}}{{{{\left( {{\text{a + b}}} \right)}^4}}}{\text{ = }}\dfrac{{{{\left( {{\text{a - b}}} \right)}^2}}}{{{{\left( {{\text{a + b}}} \right)}^2}}} + \dfrac{{{\text{4}}{{\text{a}}^2}{{\text{b}}^2}}}{{{{\left( {{\text{a + b}}} \right)}^4}}}\]
The LHS of the equation looks in the form of expansion of the term${\left( {{\text{a - b}}} \right)^2} = {{\text{a}}^2}{\text{ + }}{{\text{b}}^2}{\text{ - 2ab}}$.
Where x = a and b = \[\dfrac{{{\text{2ab}}}}{{{{\left( {{\text{a + b}}} \right)}^2}}}\]
Comparing this to the LHS, we have, a = x, ${\text{b = }}\dfrac{{{\text{2ab}}}}{{{{\left( {{\text{a + b}}} \right)}^2}}}$
\[
\Rightarrow {\left( {{\text{x}} - \dfrac{{{\text{2ab}}}}{{{{\left( {{\text{a + b}}} \right)}^2}}}} \right)^2}{\text{ = }}\dfrac{{{{\left( {{\text{a - b}}} \right)}^2}{{\left( {{\text{a + b}}} \right)}^2}{\text{ + 4}}{{\text{a}}^2}{{\text{b}}^2}}}{{{{\left( {{\text{a + b}}} \right)}^4}}} \\
\Rightarrow {\left( {{\text{x}} - \dfrac{{{\text{2ab}}}}{{{{\left( {{\text{a + b}}} \right)}^2}}}} \right)^2}{\text{ = }}{\left( {\dfrac{{\left( {{{\text{a}}^2}{\text{ + }}{{\text{b}}^2}} \right)}}{{{{\left( {{\text{a + b}}} \right)}^2}}}} \right)^2} \\
\]
Now let us take the square root on both sides, we get
\[
\Rightarrow {\text{x}} - \dfrac{{{\text{2ab}}}}{{{{\left( {{\text{a + b}}} \right)}^2}}}{\text{ = }} \pm \dfrac{{\left( {{{\text{a}}^2}{\text{ + }}{{\text{b}}^2}} \right)}}{{{{\left( {{\text{a + b}}} \right)}^2}}} \\
\Rightarrow {\text{x = }}\dfrac{{{\text{2ab }} \pm {\text{ }}\left( {{{\text{a}}^2}{\text{ + }}{{\text{b}}^2}} \right)}}{{{{\left( {{\text{a + b}}} \right)}^2}}} \\
\]
We know the expansion of the term${\left( {{\text{a - b}}} \right)^2} = {{\text{a}}^2}{\text{ + }}{{\text{b}}^2}{\text{ - 2ab}}$and${\left( {{\text{a + b}}} \right)^2} = {{\text{a}}^2}{\text{ + }}{{\text{b}}^2}{\text{ + 2ab}}$. Using them in the above we get,
\[
\Rightarrow {\text{x = }}\dfrac{{{{\left( {{\text{a + b}}} \right)}^2}}}{{{{\left( {{\text{a + b}}} \right)}^2}}},{\text{ - }}\dfrac{{{{\left( {{\text{a - b}}} \right)}^2}}}{{{{\left( {{\text{a + b}}} \right)}^2}}} \\
\Rightarrow {\text{x = 1}},{\text{ - }}\dfrac{{{{\left( {{\text{a - b}}} \right)}^2}}}{{{{\left( {{\text{a + b}}} \right)}^2}}} \\
\]
Therefore the factors of the equation ${\left( {{\text{a + b}}} \right)^2}{{\text{x}}^2} - 4{\text{abx - }}{\left( {{\text{a - b}}} \right)^2} = 0$ are (x – 1) and $\left( {{\text{x + }}\dfrac{{{{\left( {{\text{a - b}}} \right)}^2}}}{{{{\left( {{\text{a + b}}} \right)}^2}}}} \right)$.
Note: In order to solve this type of questions the key is to know the expansion of the terms of the form${\left( {{\text{a - b}}} \right)^2}{\text{ and }}{\left( {{\text{a + b}}} \right)^2}$.
To perform the factorization method the RHS of the quadratic equation should be equal to zero. We start off this method by removing all the common terms of the equation, then we perform different things like arithmetic operations on the terms, using the formulae of expansions to further simplify it.
The square root of a variable can take both the positive and negative values of the variable.
Complete step by step answer:
Given data,
To factorize${\left( {{\text{a + b}}} \right)^2}{{\text{x}}^2} - 4{\text{abx - }}{\left( {{\text{a - b}}} \right)^2} = 0$.
We factorize the given equation by the factorization method as follows:
${\left( {{\text{a + b}}} \right)^2}{{\text{x}}^2} - 4{\text{abx - }}{\left( {{\text{a - b}}} \right)^2} = 0$
Let us divide the entire equation by the term${\left( {{\text{a + b}}} \right)^2}$, we get
\[
\Rightarrow {{\text{x}}^2} - \dfrac{{4{\text{abx}}}}{{{{\left( {{\text{a + b}}} \right)}^2}}}{\text{ - }}\dfrac{{{{\left( {{\text{a - b}}} \right)}^2}}}{{{{\left( {{\text{a + b}}} \right)}^2}}} = 0 \\
\Rightarrow {{\text{x}}^2} - \dfrac{{4{\text{ab}}}}{{{{\left( {{\text{a + b}}} \right)}^2}}}{\text{x = }}\dfrac{{{{\left( {{\text{a - b}}} \right)}^2}}}{{{{\left( {{\text{a + b}}} \right)}^2}}} \\
\]
Now let us add the term$\dfrac{{{\text{4}}{{\text{a}}^2}{{\text{b}}^2}}}{{{{\left( {{\text{a + b}}} \right)}^4}}}$on both sides, we get
\[ \Rightarrow {{\text{x}}^2} - \dfrac{{4{\text{ab}}}}{{{{\left( {{\text{a + b}}} \right)}^2}}}{\text{x + }}\dfrac{{{\text{4}}{{\text{a}}^2}{{\text{b}}^2}}}{{{{\left( {{\text{a + b}}} \right)}^4}}}{\text{ = }}\dfrac{{{{\left( {{\text{a - b}}} \right)}^2}}}{{{{\left( {{\text{a + b}}} \right)}^2}}} + \dfrac{{{\text{4}}{{\text{a}}^2}{{\text{b}}^2}}}{{{{\left( {{\text{a + b}}} \right)}^4}}}\]
The LHS of the equation looks in the form of expansion of the term${\left( {{\text{a - b}}} \right)^2} = {{\text{a}}^2}{\text{ + }}{{\text{b}}^2}{\text{ - 2ab}}$.
Where x = a and b = \[\dfrac{{{\text{2ab}}}}{{{{\left( {{\text{a + b}}} \right)}^2}}}\]
Comparing this to the LHS, we have, a = x, ${\text{b = }}\dfrac{{{\text{2ab}}}}{{{{\left( {{\text{a + b}}} \right)}^2}}}$
\[
\Rightarrow {\left( {{\text{x}} - \dfrac{{{\text{2ab}}}}{{{{\left( {{\text{a + b}}} \right)}^2}}}} \right)^2}{\text{ = }}\dfrac{{{{\left( {{\text{a - b}}} \right)}^2}{{\left( {{\text{a + b}}} \right)}^2}{\text{ + 4}}{{\text{a}}^2}{{\text{b}}^2}}}{{{{\left( {{\text{a + b}}} \right)}^4}}} \\
\Rightarrow {\left( {{\text{x}} - \dfrac{{{\text{2ab}}}}{{{{\left( {{\text{a + b}}} \right)}^2}}}} \right)^2}{\text{ = }}{\left( {\dfrac{{\left( {{{\text{a}}^2}{\text{ + }}{{\text{b}}^2}} \right)}}{{{{\left( {{\text{a + b}}} \right)}^2}}}} \right)^2} \\
\]
Now let us take the square root on both sides, we get
\[
\Rightarrow {\text{x}} - \dfrac{{{\text{2ab}}}}{{{{\left( {{\text{a + b}}} \right)}^2}}}{\text{ = }} \pm \dfrac{{\left( {{{\text{a}}^2}{\text{ + }}{{\text{b}}^2}} \right)}}{{{{\left( {{\text{a + b}}} \right)}^2}}} \\
\Rightarrow {\text{x = }}\dfrac{{{\text{2ab }} \pm {\text{ }}\left( {{{\text{a}}^2}{\text{ + }}{{\text{b}}^2}} \right)}}{{{{\left( {{\text{a + b}}} \right)}^2}}} \\
\]
We know the expansion of the term${\left( {{\text{a - b}}} \right)^2} = {{\text{a}}^2}{\text{ + }}{{\text{b}}^2}{\text{ - 2ab}}$and${\left( {{\text{a + b}}} \right)^2} = {{\text{a}}^2}{\text{ + }}{{\text{b}}^2}{\text{ + 2ab}}$. Using them in the above we get,
\[
\Rightarrow {\text{x = }}\dfrac{{{{\left( {{\text{a + b}}} \right)}^2}}}{{{{\left( {{\text{a + b}}} \right)}^2}}},{\text{ - }}\dfrac{{{{\left( {{\text{a - b}}} \right)}^2}}}{{{{\left( {{\text{a + b}}} \right)}^2}}} \\
\Rightarrow {\text{x = 1}},{\text{ - }}\dfrac{{{{\left( {{\text{a - b}}} \right)}^2}}}{{{{\left( {{\text{a + b}}} \right)}^2}}} \\
\]
Therefore the factors of the equation ${\left( {{\text{a + b}}} \right)^2}{{\text{x}}^2} - 4{\text{abx - }}{\left( {{\text{a - b}}} \right)^2} = 0$ are (x – 1) and $\left( {{\text{x + }}\dfrac{{{{\left( {{\text{a - b}}} \right)}^2}}}{{{{\left( {{\text{a + b}}} \right)}^2}}}} \right)$.
Note: In order to solve this type of questions the key is to know the expansion of the terms of the form${\left( {{\text{a - b}}} \right)^2}{\text{ and }}{\left( {{\text{a + b}}} \right)^2}$.
To perform the factorization method the RHS of the quadratic equation should be equal to zero. We start off this method by removing all the common terms of the equation, then we perform different things like arithmetic operations on the terms, using the formulae of expansions to further simplify it.
The square root of a variable can take both the positive and negative values of the variable.
Recently Updated Pages
Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Trending doubts
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Gautam Buddha was born in the year A581 BC B563 BC class 10 social science CBSE

Fill the blanks with proper collective nouns 1 A of class 10 english CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

Change the following sentences into negative and interrogative class 10 english CBSE
