
Solve the following quadratic equation by factorization method:
${\left( {{\text{a + b}}} \right)^2}{{\text{x}}^2} - 4{\text{abx - }}{\left( {{\text{a - b}}} \right)^2} = 0$
Answer
574.2k+ views
Hint: In order to solve the following quadratic equation, we have to divide the entire equation by a term of the equation. Then we express the equation as one term is equal to the other. Later we express both sides of the equation as square roots and solve for the value of x. This gives us the factors of the given equation.
Complete step by step answer:
Given data,
To factorize${\left( {{\text{a + b}}} \right)^2}{{\text{x}}^2} - 4{\text{abx - }}{\left( {{\text{a - b}}} \right)^2} = 0$.
We factorize the given equation by the factorization method as follows:
${\left( {{\text{a + b}}} \right)^2}{{\text{x}}^2} - 4{\text{abx - }}{\left( {{\text{a - b}}} \right)^2} = 0$
Let us divide the entire equation by the term${\left( {{\text{a + b}}} \right)^2}$, we get
\[
\Rightarrow {{\text{x}}^2} - \dfrac{{4{\text{abx}}}}{{{{\left( {{\text{a + b}}} \right)}^2}}}{\text{ - }}\dfrac{{{{\left( {{\text{a - b}}} \right)}^2}}}{{{{\left( {{\text{a + b}}} \right)}^2}}} = 0 \\
\Rightarrow {{\text{x}}^2} - \dfrac{{4{\text{ab}}}}{{{{\left( {{\text{a + b}}} \right)}^2}}}{\text{x = }}\dfrac{{{{\left( {{\text{a - b}}} \right)}^2}}}{{{{\left( {{\text{a + b}}} \right)}^2}}} \\
\]
Now let us add the term$\dfrac{{{\text{4}}{{\text{a}}^2}{{\text{b}}^2}}}{{{{\left( {{\text{a + b}}} \right)}^4}}}$on both sides, we get
\[ \Rightarrow {{\text{x}}^2} - \dfrac{{4{\text{ab}}}}{{{{\left( {{\text{a + b}}} \right)}^2}}}{\text{x + }}\dfrac{{{\text{4}}{{\text{a}}^2}{{\text{b}}^2}}}{{{{\left( {{\text{a + b}}} \right)}^4}}}{\text{ = }}\dfrac{{{{\left( {{\text{a - b}}} \right)}^2}}}{{{{\left( {{\text{a + b}}} \right)}^2}}} + \dfrac{{{\text{4}}{{\text{a}}^2}{{\text{b}}^2}}}{{{{\left( {{\text{a + b}}} \right)}^4}}}\]
The LHS of the equation looks in the form of expansion of the term${\left( {{\text{a - b}}} \right)^2} = {{\text{a}}^2}{\text{ + }}{{\text{b}}^2}{\text{ - 2ab}}$.
Where x = a and b = \[\dfrac{{{\text{2ab}}}}{{{{\left( {{\text{a + b}}} \right)}^2}}}\]
Comparing this to the LHS, we have, a = x, ${\text{b = }}\dfrac{{{\text{2ab}}}}{{{{\left( {{\text{a + b}}} \right)}^2}}}$
\[
\Rightarrow {\left( {{\text{x}} - \dfrac{{{\text{2ab}}}}{{{{\left( {{\text{a + b}}} \right)}^2}}}} \right)^2}{\text{ = }}\dfrac{{{{\left( {{\text{a - b}}} \right)}^2}{{\left( {{\text{a + b}}} \right)}^2}{\text{ + 4}}{{\text{a}}^2}{{\text{b}}^2}}}{{{{\left( {{\text{a + b}}} \right)}^4}}} \\
\Rightarrow {\left( {{\text{x}} - \dfrac{{{\text{2ab}}}}{{{{\left( {{\text{a + b}}} \right)}^2}}}} \right)^2}{\text{ = }}{\left( {\dfrac{{\left( {{{\text{a}}^2}{\text{ + }}{{\text{b}}^2}} \right)}}{{{{\left( {{\text{a + b}}} \right)}^2}}}} \right)^2} \\
\]
Now let us take the square root on both sides, we get
\[
\Rightarrow {\text{x}} - \dfrac{{{\text{2ab}}}}{{{{\left( {{\text{a + b}}} \right)}^2}}}{\text{ = }} \pm \dfrac{{\left( {{{\text{a}}^2}{\text{ + }}{{\text{b}}^2}} \right)}}{{{{\left( {{\text{a + b}}} \right)}^2}}} \\
\Rightarrow {\text{x = }}\dfrac{{{\text{2ab }} \pm {\text{ }}\left( {{{\text{a}}^2}{\text{ + }}{{\text{b}}^2}} \right)}}{{{{\left( {{\text{a + b}}} \right)}^2}}} \\
\]
We know the expansion of the term${\left( {{\text{a - b}}} \right)^2} = {{\text{a}}^2}{\text{ + }}{{\text{b}}^2}{\text{ - 2ab}}$and${\left( {{\text{a + b}}} \right)^2} = {{\text{a}}^2}{\text{ + }}{{\text{b}}^2}{\text{ + 2ab}}$. Using them in the above we get,
\[
\Rightarrow {\text{x = }}\dfrac{{{{\left( {{\text{a + b}}} \right)}^2}}}{{{{\left( {{\text{a + b}}} \right)}^2}}},{\text{ - }}\dfrac{{{{\left( {{\text{a - b}}} \right)}^2}}}{{{{\left( {{\text{a + b}}} \right)}^2}}} \\
\Rightarrow {\text{x = 1}},{\text{ - }}\dfrac{{{{\left( {{\text{a - b}}} \right)}^2}}}{{{{\left( {{\text{a + b}}} \right)}^2}}} \\
\]
Therefore the factors of the equation ${\left( {{\text{a + b}}} \right)^2}{{\text{x}}^2} - 4{\text{abx - }}{\left( {{\text{a - b}}} \right)^2} = 0$ are (x – 1) and $\left( {{\text{x + }}\dfrac{{{{\left( {{\text{a - b}}} \right)}^2}}}{{{{\left( {{\text{a + b}}} \right)}^2}}}} \right)$.
Note: In order to solve this type of questions the key is to know the expansion of the terms of the form${\left( {{\text{a - b}}} \right)^2}{\text{ and }}{\left( {{\text{a + b}}} \right)^2}$.
To perform the factorization method the RHS of the quadratic equation should be equal to zero. We start off this method by removing all the common terms of the equation, then we perform different things like arithmetic operations on the terms, using the formulae of expansions to further simplify it.
The square root of a variable can take both the positive and negative values of the variable.
Complete step by step answer:
Given data,
To factorize${\left( {{\text{a + b}}} \right)^2}{{\text{x}}^2} - 4{\text{abx - }}{\left( {{\text{a - b}}} \right)^2} = 0$.
We factorize the given equation by the factorization method as follows:
${\left( {{\text{a + b}}} \right)^2}{{\text{x}}^2} - 4{\text{abx - }}{\left( {{\text{a - b}}} \right)^2} = 0$
Let us divide the entire equation by the term${\left( {{\text{a + b}}} \right)^2}$, we get
\[
\Rightarrow {{\text{x}}^2} - \dfrac{{4{\text{abx}}}}{{{{\left( {{\text{a + b}}} \right)}^2}}}{\text{ - }}\dfrac{{{{\left( {{\text{a - b}}} \right)}^2}}}{{{{\left( {{\text{a + b}}} \right)}^2}}} = 0 \\
\Rightarrow {{\text{x}}^2} - \dfrac{{4{\text{ab}}}}{{{{\left( {{\text{a + b}}} \right)}^2}}}{\text{x = }}\dfrac{{{{\left( {{\text{a - b}}} \right)}^2}}}{{{{\left( {{\text{a + b}}} \right)}^2}}} \\
\]
Now let us add the term$\dfrac{{{\text{4}}{{\text{a}}^2}{{\text{b}}^2}}}{{{{\left( {{\text{a + b}}} \right)}^4}}}$on both sides, we get
\[ \Rightarrow {{\text{x}}^2} - \dfrac{{4{\text{ab}}}}{{{{\left( {{\text{a + b}}} \right)}^2}}}{\text{x + }}\dfrac{{{\text{4}}{{\text{a}}^2}{{\text{b}}^2}}}{{{{\left( {{\text{a + b}}} \right)}^4}}}{\text{ = }}\dfrac{{{{\left( {{\text{a - b}}} \right)}^2}}}{{{{\left( {{\text{a + b}}} \right)}^2}}} + \dfrac{{{\text{4}}{{\text{a}}^2}{{\text{b}}^2}}}{{{{\left( {{\text{a + b}}} \right)}^4}}}\]
The LHS of the equation looks in the form of expansion of the term${\left( {{\text{a - b}}} \right)^2} = {{\text{a}}^2}{\text{ + }}{{\text{b}}^2}{\text{ - 2ab}}$.
Where x = a and b = \[\dfrac{{{\text{2ab}}}}{{{{\left( {{\text{a + b}}} \right)}^2}}}\]
Comparing this to the LHS, we have, a = x, ${\text{b = }}\dfrac{{{\text{2ab}}}}{{{{\left( {{\text{a + b}}} \right)}^2}}}$
\[
\Rightarrow {\left( {{\text{x}} - \dfrac{{{\text{2ab}}}}{{{{\left( {{\text{a + b}}} \right)}^2}}}} \right)^2}{\text{ = }}\dfrac{{{{\left( {{\text{a - b}}} \right)}^2}{{\left( {{\text{a + b}}} \right)}^2}{\text{ + 4}}{{\text{a}}^2}{{\text{b}}^2}}}{{{{\left( {{\text{a + b}}} \right)}^4}}} \\
\Rightarrow {\left( {{\text{x}} - \dfrac{{{\text{2ab}}}}{{{{\left( {{\text{a + b}}} \right)}^2}}}} \right)^2}{\text{ = }}{\left( {\dfrac{{\left( {{{\text{a}}^2}{\text{ + }}{{\text{b}}^2}} \right)}}{{{{\left( {{\text{a + b}}} \right)}^2}}}} \right)^2} \\
\]
Now let us take the square root on both sides, we get
\[
\Rightarrow {\text{x}} - \dfrac{{{\text{2ab}}}}{{{{\left( {{\text{a + b}}} \right)}^2}}}{\text{ = }} \pm \dfrac{{\left( {{{\text{a}}^2}{\text{ + }}{{\text{b}}^2}} \right)}}{{{{\left( {{\text{a + b}}} \right)}^2}}} \\
\Rightarrow {\text{x = }}\dfrac{{{\text{2ab }} \pm {\text{ }}\left( {{{\text{a}}^2}{\text{ + }}{{\text{b}}^2}} \right)}}{{{{\left( {{\text{a + b}}} \right)}^2}}} \\
\]
We know the expansion of the term${\left( {{\text{a - b}}} \right)^2} = {{\text{a}}^2}{\text{ + }}{{\text{b}}^2}{\text{ - 2ab}}$and${\left( {{\text{a + b}}} \right)^2} = {{\text{a}}^2}{\text{ + }}{{\text{b}}^2}{\text{ + 2ab}}$. Using them in the above we get,
\[
\Rightarrow {\text{x = }}\dfrac{{{{\left( {{\text{a + b}}} \right)}^2}}}{{{{\left( {{\text{a + b}}} \right)}^2}}},{\text{ - }}\dfrac{{{{\left( {{\text{a - b}}} \right)}^2}}}{{{{\left( {{\text{a + b}}} \right)}^2}}} \\
\Rightarrow {\text{x = 1}},{\text{ - }}\dfrac{{{{\left( {{\text{a - b}}} \right)}^2}}}{{{{\left( {{\text{a + b}}} \right)}^2}}} \\
\]
Therefore the factors of the equation ${\left( {{\text{a + b}}} \right)^2}{{\text{x}}^2} - 4{\text{abx - }}{\left( {{\text{a - b}}} \right)^2} = 0$ are (x – 1) and $\left( {{\text{x + }}\dfrac{{{{\left( {{\text{a - b}}} \right)}^2}}}{{{{\left( {{\text{a + b}}} \right)}^2}}}} \right)$.
Note: In order to solve this type of questions the key is to know the expansion of the terms of the form${\left( {{\text{a - b}}} \right)^2}{\text{ and }}{\left( {{\text{a + b}}} \right)^2}$.
To perform the factorization method the RHS of the quadratic equation should be equal to zero. We start off this method by removing all the common terms of the equation, then we perform different things like arithmetic operations on the terms, using the formulae of expansions to further simplify it.
The square root of a variable can take both the positive and negative values of the variable.
Recently Updated Pages
Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Trending doubts
Which of the following does not have a fundamental class 10 physics CBSE

State and prove the Pythagoras theorem-class-10-maths-CBSE

State BPT theorem and prove it class 10 maths CBSE

A triangle ABC is drawn to circumscribe a circle of class 10 maths CBSE

What is Contraception List its four different methods class 10 biology CBSE

Difference between mass and weight class 10 physics CBSE

