
Solve the following: $ \left( 1+{{y}^{2}} \right)dx=\left( {{\tan }^{-1}}y-x \right)dy $ .
Answer
549.6k+ views
Hint: We are asked to find the solution of $ \left( 1+{{y}^{2}} \right)dx=\left( {{\tan }^{-1}}y-x \right)dy $ . We use the knowledge of linear differential equations to solve this; we simplify our equation into linear form $ \dfrac{dx}{dy}+P\left( y \right)x=\theta \left( y \right) $ . Once we have linear form then find the integrating factor using $ I.F={{e}^{\int{P\left( y \right)dy}}} $ . Once we get the integrity factor we will go for finding a solution, for which we use $ x.IF=\int{Q\left( y \right)}.I.F+C $ . We simplify and get our required solution.
Complete step by step solution:
We are given $ \left( 1+{{y}^{2}} \right)dx=\left( {{\tan }^{-1}}y-x \right)dy $ $ \left( 1+{{y}^{2}} \right)dx=\left( {{\tan }^{-1}}y-x \right)dy $
We have to solve this and find the solution to this equation.
To solve this we need the knowledge of linear differential equations.
We know equation $ \dfrac{dx}{dy}+P\left( y \right)x=\theta \left( y \right) $ $ \dfrac{dx}{dy}+P\left( y \right)x=\theta \left( y \right) $
Such forms are called a linear differential equation.
Solution of this form is given as - $ x.IF=\int{Q\left( y \right)}.I.F+C $ $ x.IF=\int{Q\left( y \right)}.I.F+C $
Where,
I.F is called integrating factor and is given as $ I.F={{e}^{\int{P\left( y \right)dy}}} $
We are given our equation as -
$ \left( 1+{{y}^{2}} \right)dx=\left( {{\tan }^{-1}}y-x \right)dy $
Simplifying, we get
$ \dfrac{dx}{dy}=\dfrac{{{\tan }^{-1}}\theta }{1+{{y}^{2}}}-\dfrac{x}{1+{{y}^{2}}} $
Now, simplifying further, we get
$ \dfrac{dx}{dy}+\dfrac{x}{1+{{y}^{2}}}=\dfrac{{{\tan }^{-1}}y}{1+{{y}^{2}}} $
We see closely that this statement is the same as a linear differential equation.
Hence, we have $ P\left( y \right)=\dfrac{1}{1+{{y}^{2}}} $ and we have
$ Q\left( y \right)=\dfrac{{{\tan }^{-1}}y}{1+{{y}^{2}}} $
To find the solution to our problem, we will find an integrating factor.
As we know $ I.F={{e}^{\int{P\left( y \right)dy}}} $
We have the function $ P\left( y \right)=\dfrac{1}{1+{{y}^{2}}} $ , so we can write $ I.F={{e}^{\int{\dfrac{1}{1+{{y}^{2}}}dy}}} $ .
As we know that $ \int{\dfrac{1}{1+{{y}^{2}}}dy}={{\tan }^{-1}}y $ , so we get $ I.F={{e}^{\int{\dfrac{1}{1+{{y}^{2}}}dy}}}={{e}^{{{\tan }^{-1}}y}} $
Now, we know the solution is given as –
$ x.I.F=\int{Q\left( y \right).I.F+C} $
Substituting $ I.F={{e}^{{{\tan }^{-1}}y}} $ , we get
$ x.{{e}^{{{\tan }^{-1}}y}}=\int{\dfrac{{{\tan }^{-1}}y{{e}^{{{\tan }^{-1}}y}}}{1+{{y}^{2}}}+C} $ …………………………….. (i)
Now we have to solve $ \int{\dfrac{{{\tan }^{-1}}y{{e}^{{{\tan }^{-1}}y}}}{1+{{y}^{2}}}dy} $
We get $ {{\tan }^{-1}}y=t $
So, differentiating both sides we get
$ \dfrac{1}{1+{{y}^{2}}}dy=at $
So, our integral become
$ \int{\dfrac{{{\tan }^{-1}}y{{e}^{{{\tan }^{-1}}y}}}{1+{{y}^{2}}}dy=\int{t{{e}^{t}}at}} $
Now we use the ILATE rule. Here we have algebraic and exponential function, so as per ILATE we will choose ‘t’ as first function and $ {{e}^{t}} $ as second function. So, we get-
$ \int{\dfrac{{{\tan }^{-1}}y{{e}^{{{\tan }^{-1}}y}}}{1+{{y}^{2}}}dy=\int{t{{e}^{t}}at}} $
Solving, we get
$ =t{{e}^{t}}-\int{i.{{e}^{t}}at} $
Simplifying, we get –
$ \begin{align}
& =t{{e}^{t}}-{{e}^{t}} \\
& =\left( t-1 \right){{e}^{t}} \\
\end{align} $
So, we get –
\[\int{\dfrac{{{\tan }^{-1}}y{{e}^{{{\tan }^{-1}}y}}}{1+{{y}^{2}}}dy=\left( {{\tan }^{-1}}y-1 \right){{e}^{{{\tan }^{-1}}y}}}\]
Using this in equation (i), we get –
$ x.{{e}^{{{\tan }^{-1}}y}}=\left( {{\tan }^{-1}}y-1 \right){{e}^{{{\tan }^{-1}}y}}+C $
Dividing by $ {{e}^{{{\tan }^{-1}}y}} $ , we get –
$ x=\left( {{\tan }^{-1}}y-1 \right)+\dfrac{C}{{{e}^{{{\tan }^{-1}}y}}} $
So, solution is $ x=\left( {{\tan }^{-1}}y-1 \right)+C.{{e}^{{{\tan }^{-1}}y}} $ .
Note:
While solving these integrals, we need to be very clear about choosing the first function and the second function. We need to be more clear on choosing the term $ \dfrac{dx}{dy} $ or $ \dfrac{dy}{dx} $ to form a linear equation. When we substitute our function as ‘t’. So, we have to re-substitute the original value at the last.
Complete step by step solution:
We are given $ \left( 1+{{y}^{2}} \right)dx=\left( {{\tan }^{-1}}y-x \right)dy $ $ \left( 1+{{y}^{2}} \right)dx=\left( {{\tan }^{-1}}y-x \right)dy $
We have to solve this and find the solution to this equation.
To solve this we need the knowledge of linear differential equations.
We know equation $ \dfrac{dx}{dy}+P\left( y \right)x=\theta \left( y \right) $ $ \dfrac{dx}{dy}+P\left( y \right)x=\theta \left( y \right) $
Such forms are called a linear differential equation.
Solution of this form is given as - $ x.IF=\int{Q\left( y \right)}.I.F+C $ $ x.IF=\int{Q\left( y \right)}.I.F+C $
Where,
I.F is called integrating factor and is given as $ I.F={{e}^{\int{P\left( y \right)dy}}} $
We are given our equation as -
$ \left( 1+{{y}^{2}} \right)dx=\left( {{\tan }^{-1}}y-x \right)dy $
Simplifying, we get
$ \dfrac{dx}{dy}=\dfrac{{{\tan }^{-1}}\theta }{1+{{y}^{2}}}-\dfrac{x}{1+{{y}^{2}}} $
Now, simplifying further, we get
$ \dfrac{dx}{dy}+\dfrac{x}{1+{{y}^{2}}}=\dfrac{{{\tan }^{-1}}y}{1+{{y}^{2}}} $
We see closely that this statement is the same as a linear differential equation.
Hence, we have $ P\left( y \right)=\dfrac{1}{1+{{y}^{2}}} $ and we have
$ Q\left( y \right)=\dfrac{{{\tan }^{-1}}y}{1+{{y}^{2}}} $
To find the solution to our problem, we will find an integrating factor.
As we know $ I.F={{e}^{\int{P\left( y \right)dy}}} $
We have the function $ P\left( y \right)=\dfrac{1}{1+{{y}^{2}}} $ , so we can write $ I.F={{e}^{\int{\dfrac{1}{1+{{y}^{2}}}dy}}} $ .
As we know that $ \int{\dfrac{1}{1+{{y}^{2}}}dy}={{\tan }^{-1}}y $ , so we get $ I.F={{e}^{\int{\dfrac{1}{1+{{y}^{2}}}dy}}}={{e}^{{{\tan }^{-1}}y}} $
Now, we know the solution is given as –
$ x.I.F=\int{Q\left( y \right).I.F+C} $
Substituting $ I.F={{e}^{{{\tan }^{-1}}y}} $ , we get
$ x.{{e}^{{{\tan }^{-1}}y}}=\int{\dfrac{{{\tan }^{-1}}y{{e}^{{{\tan }^{-1}}y}}}{1+{{y}^{2}}}+C} $ …………………………….. (i)
Now we have to solve $ \int{\dfrac{{{\tan }^{-1}}y{{e}^{{{\tan }^{-1}}y}}}{1+{{y}^{2}}}dy} $
We get $ {{\tan }^{-1}}y=t $
So, differentiating both sides we get
$ \dfrac{1}{1+{{y}^{2}}}dy=at $
So, our integral become
$ \int{\dfrac{{{\tan }^{-1}}y{{e}^{{{\tan }^{-1}}y}}}{1+{{y}^{2}}}dy=\int{t{{e}^{t}}at}} $
Now we use the ILATE rule. Here we have algebraic and exponential function, so as per ILATE we will choose ‘t’ as first function and $ {{e}^{t}} $ as second function. So, we get-
$ \int{\dfrac{{{\tan }^{-1}}y{{e}^{{{\tan }^{-1}}y}}}{1+{{y}^{2}}}dy=\int{t{{e}^{t}}at}} $
Solving, we get
$ =t{{e}^{t}}-\int{i.{{e}^{t}}at} $
Simplifying, we get –
$ \begin{align}
& =t{{e}^{t}}-{{e}^{t}} \\
& =\left( t-1 \right){{e}^{t}} \\
\end{align} $
So, we get –
\[\int{\dfrac{{{\tan }^{-1}}y{{e}^{{{\tan }^{-1}}y}}}{1+{{y}^{2}}}dy=\left( {{\tan }^{-1}}y-1 \right){{e}^{{{\tan }^{-1}}y}}}\]
Using this in equation (i), we get –
$ x.{{e}^{{{\tan }^{-1}}y}}=\left( {{\tan }^{-1}}y-1 \right){{e}^{{{\tan }^{-1}}y}}+C $
Dividing by $ {{e}^{{{\tan }^{-1}}y}} $ , we get –
$ x=\left( {{\tan }^{-1}}y-1 \right)+\dfrac{C}{{{e}^{{{\tan }^{-1}}y}}} $
So, solution is $ x=\left( {{\tan }^{-1}}y-1 \right)+C.{{e}^{{{\tan }^{-1}}y}} $ .
Note:
While solving these integrals, we need to be very clear about choosing the first function and the second function. We need to be more clear on choosing the term $ \dfrac{dx}{dy} $ or $ \dfrac{dy}{dx} $ to form a linear equation. When we substitute our function as ‘t’. So, we have to re-substitute the original value at the last.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

The draft of the Preamble of the Indian Constitution class 10 social science CBSE

Who gave "Inqilab Zindabad" slogan?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

