
Solve the following inverse trigonometric equation equation:
$\cos \left( {{\tan }^{-1}}x \right)=\sin \left( {{\cot }^{-1}}\dfrac{3}{4} \right)$
Answer
607.8k+ views
Hint: For solving this question first we will assume ${{\tan }^{-1}}x=\alpha $ and ${{\cot }^{-1}}\dfrac{3}{4}=\beta $ . After that, we will try to transform the given equation $\cos \alpha =\sin \beta $ in terms of $\tan \alpha $ and $\cot \beta $ with the help of trigonometric formulas like ${{\tan }^{2}}\theta +1={{\sec }^{2}}\theta $ and ${{\cot }^{2}}\theta +1={{\csc }^{2}}\theta $ . Then, we will put $\tan \alpha =x$ and $\cot \beta =\dfrac{3}{4}$ to solve further for the suitable values of $x$ .
Complete step-by-step solution -
Given:
We have to find the suitable values of $x$ from the following equation:
$\cos \left( {{\tan }^{-1}}x \right)=\sin \left( {{\cot }^{-1}}\dfrac{3}{4} \right)$
Now, let ${{\tan }^{-1}}x=\alpha $ and ${{\cot }^{-1}}\dfrac{3}{4}=\beta $ . Then,
$\begin{align}
& \cos \left( {{\tan }^{-1}}x \right)=\sin \left( {{\cot }^{-1}}\dfrac{3}{4} \right) \\
& \Rightarrow \cos \alpha =\sin \beta \\
\end{align}$
Now, we will square both terms in the above equation. Then,
$\begin{align}
& \cos \alpha =\sin \beta \\
& \Rightarrow {{\cos }^{2}}\alpha ={{\sin }^{2}}\beta \\
\end{align}$
Now, as we know that, $\cos \alpha =\dfrac{1}{\sec \alpha }$ and $\sin \beta =\dfrac{1}{\csc \beta }$ . Then,
$\begin{align}
& {{\cos }^{2}}\alpha ={{\sin }^{2}}\beta \\
& \Rightarrow \dfrac{1}{{{\sec }^{2}}\alpha }=\dfrac{1}{{{\csc }^{2}}\beta } \\
& \Rightarrow {{\csc }^{2}}\beta ={{\sec }^{2}}\alpha .....................\left( 1 \right) \\
\end{align}$
Now, before we proceed we should know the following formulas:
$\begin{align}
& {{\tan }^{2}}\theta +1={{\sec }^{2}}\theta ..................\left( 2 \right) \\
& {{\cot }^{2}}\theta +1={{\csc }^{2}}\theta ..................\left( 3 \right) \\
\end{align}$
Now, as per our assumption ${{\tan }^{-1}}x=\alpha $ and ${{\cot }^{-1}}\dfrac{3}{4}=\beta $ . And we know that, $\tan \left( {{\tan }^{-1}}x \right)=x$ and $\cot \left( {{\cot }^{-1}}x \right)=x$ for any $x\in R$ . Then,
$\begin{align}
& {{\tan }^{-1}}x=\alpha \\
& \Rightarrow \tan \left( {{\tan }^{-1}}x \right)=\tan \alpha \\
& \Rightarrow x=\tan \alpha \\
& \Rightarrow \tan \alpha =x............................\left( 4 \right) \\
& {{\cot }^{-1}}\dfrac{3}{4}=\beta \\
& \Rightarrow \cot \left( {{\cot }^{-1}}\dfrac{3}{4} \right)=\cot \beta \\
& \Rightarrow \dfrac{3}{4}=\cot \beta \\
& \Rightarrow \cot \beta =\dfrac{3}{4}...........................\left( 5 \right) \\
\end{align}$
Now, we will use the formula from the equation (2) to write ${{\sec }^{2}}\alpha =1+{{\tan }^{2}}\alpha $ in equation (1) and formula from equation (3) to write ${{\csc }^{2}}\beta ={{\cot }^{2}}\beta +1$ in equation (1). Then,
$\begin{align}
& {{\csc }^{2}}\beta ={{\sec }^{2}}\alpha \\
& \Rightarrow 1+{{\cot }^{2}}\beta =1+{{\tan }^{2}}\alpha \\
& \Rightarrow {{\cot }^{2}}\beta ={{\tan }^{2}}\alpha \\
\end{align}$
Now, we will put $\tan \alpha =x$ from equation (4) and $\cot \beta =\dfrac{3}{4}$ from equation (5) in the above equation. Then,
$\begin{align}
& {{\cot }^{2}}\beta ={{\tan }^{2}}\alpha \\
& \Rightarrow {{\left( \dfrac{3}{4} \right)}^{2}}={{x}^{2}} \\
& \Rightarrow {{x}^{2}}={{\left( \dfrac{3}{4} \right)}^{2}} \\
& \Rightarrow x=\pm \dfrac{3}{4} \\
\end{align}$
Now, from the above result we conclude that, if $\cos \left( {{\tan }^{-1}}x \right)=\sin \left( {{\cot }^{-1}}\dfrac{3}{4} \right)$ then, the value of $x$ will be equal to $\dfrac{3}{4},-\dfrac{3}{4}$ . Then,
$\begin{align}
& \cos \left( {{\tan }^{-1}}x \right)=\sin \left( {{\cot }^{-1}}\dfrac{3}{4} \right) \\
& \Rightarrow x=\pm \dfrac{3}{4} \\
\end{align}$
Thus, suitable values of $x$ will be $x=\pm \dfrac{3}{4}$ .
Note: Here, the student should first understand what is asked in the question, and then proceed in the right direction to get the correct answer quickly. After that, we should proceed in a stepwise manner in such questions and apply basic formulas of trigonometry for better clarity. And avoid calculation error while solving. Moreover, we could have directly calculated the value of $\cos \left( {{\tan }^{-1}}x \right)$ by formula $\cos \left( {{\tan }^{-1}}x \right)=\dfrac{1}{\sqrt{1+{{x}^{2}}}}$ , where $x\in R$ and value of $\sin \left( {{\cot }^{-1}}\dfrac{3}{4} \right)$ by formula $\sin \left( {{\cot }^{-1}}x \right)=\dfrac{1}{\sqrt{1+{{x}^{2}}}}$ , where $x\in R$ .
Complete step-by-step solution -
Given:
We have to find the suitable values of $x$ from the following equation:
$\cos \left( {{\tan }^{-1}}x \right)=\sin \left( {{\cot }^{-1}}\dfrac{3}{4} \right)$
Now, let ${{\tan }^{-1}}x=\alpha $ and ${{\cot }^{-1}}\dfrac{3}{4}=\beta $ . Then,
$\begin{align}
& \cos \left( {{\tan }^{-1}}x \right)=\sin \left( {{\cot }^{-1}}\dfrac{3}{4} \right) \\
& \Rightarrow \cos \alpha =\sin \beta \\
\end{align}$
Now, we will square both terms in the above equation. Then,
$\begin{align}
& \cos \alpha =\sin \beta \\
& \Rightarrow {{\cos }^{2}}\alpha ={{\sin }^{2}}\beta \\
\end{align}$
Now, as we know that, $\cos \alpha =\dfrac{1}{\sec \alpha }$ and $\sin \beta =\dfrac{1}{\csc \beta }$ . Then,
$\begin{align}
& {{\cos }^{2}}\alpha ={{\sin }^{2}}\beta \\
& \Rightarrow \dfrac{1}{{{\sec }^{2}}\alpha }=\dfrac{1}{{{\csc }^{2}}\beta } \\
& \Rightarrow {{\csc }^{2}}\beta ={{\sec }^{2}}\alpha .....................\left( 1 \right) \\
\end{align}$
Now, before we proceed we should know the following formulas:
$\begin{align}
& {{\tan }^{2}}\theta +1={{\sec }^{2}}\theta ..................\left( 2 \right) \\
& {{\cot }^{2}}\theta +1={{\csc }^{2}}\theta ..................\left( 3 \right) \\
\end{align}$
Now, as per our assumption ${{\tan }^{-1}}x=\alpha $ and ${{\cot }^{-1}}\dfrac{3}{4}=\beta $ . And we know that, $\tan \left( {{\tan }^{-1}}x \right)=x$ and $\cot \left( {{\cot }^{-1}}x \right)=x$ for any $x\in R$ . Then,
$\begin{align}
& {{\tan }^{-1}}x=\alpha \\
& \Rightarrow \tan \left( {{\tan }^{-1}}x \right)=\tan \alpha \\
& \Rightarrow x=\tan \alpha \\
& \Rightarrow \tan \alpha =x............................\left( 4 \right) \\
& {{\cot }^{-1}}\dfrac{3}{4}=\beta \\
& \Rightarrow \cot \left( {{\cot }^{-1}}\dfrac{3}{4} \right)=\cot \beta \\
& \Rightarrow \dfrac{3}{4}=\cot \beta \\
& \Rightarrow \cot \beta =\dfrac{3}{4}...........................\left( 5 \right) \\
\end{align}$
Now, we will use the formula from the equation (2) to write ${{\sec }^{2}}\alpha =1+{{\tan }^{2}}\alpha $ in equation (1) and formula from equation (3) to write ${{\csc }^{2}}\beta ={{\cot }^{2}}\beta +1$ in equation (1). Then,
$\begin{align}
& {{\csc }^{2}}\beta ={{\sec }^{2}}\alpha \\
& \Rightarrow 1+{{\cot }^{2}}\beta =1+{{\tan }^{2}}\alpha \\
& \Rightarrow {{\cot }^{2}}\beta ={{\tan }^{2}}\alpha \\
\end{align}$
Now, we will put $\tan \alpha =x$ from equation (4) and $\cot \beta =\dfrac{3}{4}$ from equation (5) in the above equation. Then,
$\begin{align}
& {{\cot }^{2}}\beta ={{\tan }^{2}}\alpha \\
& \Rightarrow {{\left( \dfrac{3}{4} \right)}^{2}}={{x}^{2}} \\
& \Rightarrow {{x}^{2}}={{\left( \dfrac{3}{4} \right)}^{2}} \\
& \Rightarrow x=\pm \dfrac{3}{4} \\
\end{align}$
Now, from the above result we conclude that, if $\cos \left( {{\tan }^{-1}}x \right)=\sin \left( {{\cot }^{-1}}\dfrac{3}{4} \right)$ then, the value of $x$ will be equal to $\dfrac{3}{4},-\dfrac{3}{4}$ . Then,
$\begin{align}
& \cos \left( {{\tan }^{-1}}x \right)=\sin \left( {{\cot }^{-1}}\dfrac{3}{4} \right) \\
& \Rightarrow x=\pm \dfrac{3}{4} \\
\end{align}$
Thus, suitable values of $x$ will be $x=\pm \dfrac{3}{4}$ .
Note: Here, the student should first understand what is asked in the question, and then proceed in the right direction to get the correct answer quickly. After that, we should proceed in a stepwise manner in such questions and apply basic formulas of trigonometry for better clarity. And avoid calculation error while solving. Moreover, we could have directly calculated the value of $\cos \left( {{\tan }^{-1}}x \right)$ by formula $\cos \left( {{\tan }^{-1}}x \right)=\dfrac{1}{\sqrt{1+{{x}^{2}}}}$ , where $x\in R$ and value of $\sin \left( {{\cot }^{-1}}\dfrac{3}{4} \right)$ by formula $\sin \left( {{\cot }^{-1}}x \right)=\dfrac{1}{\sqrt{1+{{x}^{2}}}}$ , where $x\in R$ .
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

