
Solve the following:
\[\int {\dfrac{{{{\sin }^3}xdx}}{{\left( {1 + {{\cos }^2}x} \right)\sqrt {1 + {{\cos }^2}x + {{\cos }^4}x} }}} \]
A.\[{\sec ^{ - 1}}\left( {\sec x + \cos x} \right) + C\]
B.\[{\sec ^{ - 1}}\left( {\sec x - \cos x} \right) + C\]
C.\[{\sec ^{ - 1}}\left( {\cos x - \tan x} \right) + C\]
D.\[{\sec ^{ - 1}}\left( {\cos x + \tan x} \right) + C\]
Answer
493.8k+ views
Hint: In the given question , we have options given in \[{\sec ^{ - 1}}\] , so we have to use the formula of the derivative of the \[{\sec ^{ - 1}}\] which is \[\dfrac{{d\left( {{{\sec }^{ - 1}}x} \right)}}{{dx}} = \dfrac{1}{{x\sqrt {{x^2} - 1} }}\] . First we simplify the given expression in terms \[\sec x\] , then integrate the expression accordingly .
Complete step-by-step answer:
Given : \[\int {\dfrac{{{{\sin }^3}xdx}}{{\left( {1 + {{\cos }^2}x} \right)\sqrt {1 + {{\cos }^2}x + {{\cos }^4}x} }}} \]
Now , in the denominator we will take \[\cos x\] and \[{\cos ^2}x\] from the under root term , we get
\[\int {\dfrac{{{{\sin }^3}xdx}}{{\cos x\left( {\sec x + \cos x} \right)\cos x\sqrt {{{\sec }^2}x + 1 + {{\cos }^2}x} }}} \]
Now adding and subtracting \[1\] in the under root term of denominator ,
\[\int {\dfrac{{{{\sin }^3}xdx}}{{\cos x\left( {\sec x + \cos x} \right)\cos x\sqrt {{{\sec }^2}x + 1 + 1 - 1+{{\cos }^2}x} }}} \]
On simplifying we get ,
\[\int {\dfrac{{{{\sin }^3}xdx}}{{\cos x\left( {\sec x + \cos x} \right)\cos x\sqrt {{{\sec }^2}x + 2 + {{\cos }^2}x - 1} }}} \]
Now using the identity of \[{\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab\] in denominator we get ,
\[\int {\dfrac{{{{\sin }^3}xdx}}{{{{\cos }^2}x\left( {\sec x + \cos x} \right)\sqrt {{{\left( {\sec x + \cos x} \right)}^2} - 1} }}} \]
Now let \[\left( {\sec x + \cos x} \right) = t\]
On simplification we get ,
\[\dfrac{1}{{\cos x}} + \cos = t\]
On simplifying we get ,
\[\dfrac{{1 + {{\cos }^2}x}}{{\cos x}} = t\]
Now differentiating w.r.t \[x\] using quotient rule , we get
\[dt = \dfrac{{\left( { - 2\cos x\sin x} \right)\cos x - \left\{ { - \sin x\left( {1 + {{\cos }^2}x} \right)} \right\}}}{{{{\cos }^2}x}}dx\]
On simplifying we get ,
\[dt = \dfrac{{\left( { - 2\cos x\sin x} \right)\cos x + \sin x\left( {1 + {{\cos }^2}x} \right)}}{{{{\cos }^2}x}}dx\]
On solving we get ,
\[dt = \dfrac{{ - 2{{\cos }^2}x\sin x + \sin x{{\cos }^2}x + \sin x}}{{{{\cos }^2}x}}dx\]
On simplifying we get ,
\[dt = \dfrac{{ - {{\cos }^2}x\sin x + \sin x}}{{{{\cos }^2}x}}dx\]
Taking \[\sin x\] common we get ,
\[dt = \dfrac{{\sin x\left( {1 - {{\cos }^2}x} \right)}}{{{{\cos }^2}x}}dx\]
On using the trigonometric identity \[{\sin ^2}x + {\cos ^2}x = 1\] we get ,
\[dt = \dfrac{{\sin x\left( {{{\sin }^2}x} \right)}}{{{{\cos }^2}x}}dx\]
On simplifying we get ,
\[dt = \dfrac{{{{\sin }^3}x}}{{{{\cos }^2}x}}dx\]
Now putting the value of \[dt\] and \[\left( {\sec x + \cos x} \right) = t\] we get ,
\[\int {\dfrac{{dt}}{{t\sqrt {{t^2} - 1} }}} \]
Now we know that derivative of \[{\sec ^{ - 1}}x\] is \[\dfrac{1}{{x\sqrt {{x^2} - 1} }}\], so on integrating we will get \[{\sec ^{ - 1}}x\] .
On integrating we get ,
\[ = {\sec ^{ - 1}}t + C\]
Now we will put the value of \[t\] we get ,
\[ = {\sec ^{ - 1}}\left( {\sec x + \cos x} \right) + C\]
So, the correct answer is “Option A”.
Note: When you make substitution always do it in such a way that the derivative of that will get adjusted in the given expression and then integrate accordingly . Also , write the value which you have substituted or let . In the final answer write \[C\] ( constant ) , as it makes the answer complete .
Complete step-by-step answer:
Given : \[\int {\dfrac{{{{\sin }^3}xdx}}{{\left( {1 + {{\cos }^2}x} \right)\sqrt {1 + {{\cos }^2}x + {{\cos }^4}x} }}} \]
Now , in the denominator we will take \[\cos x\] and \[{\cos ^2}x\] from the under root term , we get
\[\int {\dfrac{{{{\sin }^3}xdx}}{{\cos x\left( {\sec x + \cos x} \right)\cos x\sqrt {{{\sec }^2}x + 1 + {{\cos }^2}x} }}} \]
Now adding and subtracting \[1\] in the under root term of denominator ,
\[\int {\dfrac{{{{\sin }^3}xdx}}{{\cos x\left( {\sec x + \cos x} \right)\cos x\sqrt {{{\sec }^2}x + 1 + 1 - 1+{{\cos }^2}x} }}} \]
On simplifying we get ,
\[\int {\dfrac{{{{\sin }^3}xdx}}{{\cos x\left( {\sec x + \cos x} \right)\cos x\sqrt {{{\sec }^2}x + 2 + {{\cos }^2}x - 1} }}} \]
Now using the identity of \[{\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab\] in denominator we get ,
\[\int {\dfrac{{{{\sin }^3}xdx}}{{{{\cos }^2}x\left( {\sec x + \cos x} \right)\sqrt {{{\left( {\sec x + \cos x} \right)}^2} - 1} }}} \]
Now let \[\left( {\sec x + \cos x} \right) = t\]
On simplification we get ,
\[\dfrac{1}{{\cos x}} + \cos = t\]
On simplifying we get ,
\[\dfrac{{1 + {{\cos }^2}x}}{{\cos x}} = t\]
Now differentiating w.r.t \[x\] using quotient rule , we get
\[dt = \dfrac{{\left( { - 2\cos x\sin x} \right)\cos x - \left\{ { - \sin x\left( {1 + {{\cos }^2}x} \right)} \right\}}}{{{{\cos }^2}x}}dx\]
On simplifying we get ,
\[dt = \dfrac{{\left( { - 2\cos x\sin x} \right)\cos x + \sin x\left( {1 + {{\cos }^2}x} \right)}}{{{{\cos }^2}x}}dx\]
On solving we get ,
\[dt = \dfrac{{ - 2{{\cos }^2}x\sin x + \sin x{{\cos }^2}x + \sin x}}{{{{\cos }^2}x}}dx\]
On simplifying we get ,
\[dt = \dfrac{{ - {{\cos }^2}x\sin x + \sin x}}{{{{\cos }^2}x}}dx\]
Taking \[\sin x\] common we get ,
\[dt = \dfrac{{\sin x\left( {1 - {{\cos }^2}x} \right)}}{{{{\cos }^2}x}}dx\]
On using the trigonometric identity \[{\sin ^2}x + {\cos ^2}x = 1\] we get ,
\[dt = \dfrac{{\sin x\left( {{{\sin }^2}x} \right)}}{{{{\cos }^2}x}}dx\]
On simplifying we get ,
\[dt = \dfrac{{{{\sin }^3}x}}{{{{\cos }^2}x}}dx\]
Now putting the value of \[dt\] and \[\left( {\sec x + \cos x} \right) = t\] we get ,
\[\int {\dfrac{{dt}}{{t\sqrt {{t^2} - 1} }}} \]
Now we know that derivative of \[{\sec ^{ - 1}}x\] is \[\dfrac{1}{{x\sqrt {{x^2} - 1} }}\], so on integrating we will get \[{\sec ^{ - 1}}x\] .
On integrating we get ,
\[ = {\sec ^{ - 1}}t + C\]
Now we will put the value of \[t\] we get ,
\[ = {\sec ^{ - 1}}\left( {\sec x + \cos x} \right) + C\]
So, the correct answer is “Option A”.
Note: When you make substitution always do it in such a way that the derivative of that will get adjusted in the given expression and then integrate accordingly . Also , write the value which you have substituted or let . In the final answer write \[C\] ( constant ) , as it makes the answer complete .
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

