Answer
Verified
495.3k+ views
Hint: We should take care about logarithm inequalities by taking consideration of the logarithm. That is, if the base is greater than 1, the inequality sign doesn’t change. However, if base if less than 1, the inequality sign is reversed.
Complete step-by-step answer:
Thus, we should solve two cases concerning logarithm bases separately. (namely, 2x>1 and 2x<1)
Case 1: 2x > 1
$\begin{align}
& {{\log }_{2x}}({{x}^{2}}-5x+6)<1 \\
& {{\log }_{2x}}({{x}^{2}}-5x+6)<{{\log }_{2x}}(2x) \\
\end{align}$
Here, we don’t have to change the inequality sign since, 2x > 1,
$\begin{align}
& {{x}^{2}}-5x+6<2x \\
& {{x}^{2}}-7x+6<0 \\
& (x-1)(x-6)<0\text{ -- (1)} \\
\end{align}$
From (1), we have 1 < x < 6 -- (A)
Also, since, 2x > 1
We have, x > $\dfrac{1}{2}\text{ -- (B)}$
Thus, we need to satisfy (A) and (B) together, since for Case 1 to be true, both these conditions should be true.
Thus, doing so, we would have,
1 < x < 6 (Since, this inequality satisfies both (A) and (B) both together).
Case 2: 2x < 1
$\begin{align}
& {{\log }_{2x}}({{x}^{2}}-5x+6)<1 \\
& {{\log }_{2x}}({{x}^{2}}-5x+6)<{{\log }_{2x}}(2x) \\
\end{align}$
Here, we have to change the inequality sign since, 2x < 1,
$\begin{align}
& {{x}^{2}}-5x+6>2x \\
& {{x}^{2}}-7x+6>0 \\
& (x-1)(x-6)>0\text{ -- (2)} \\
\end{align}$
From (2), we have, x < 1 and x > 6 -- (C)
Further, we also have, 2x < 1
So, x < $\dfrac{1}{2}\text{ -- (D)}$
Thus, we need to satisfy (C) and (D) together, since for Case 2 to be true, both these conditions should be true.
Thus, doing so, we would have,
x < $\dfrac{1}{2}$(Since, this inequality satisfies both (C) and (D) both together)
Combining the inequalities from Case 1 and Case 2, we get,
1 < x < 6 -- (I) or
x < $\dfrac{1}{2}$ -- (II)
Thus, (I) and (II) satisfy the above inequality in the problem
Note: A common mistake made is not considering case 2, where 2x < 1. Thus, it is important to remember that when solving logarithm inequalities, when the logarithm base is less than 1, the inequality sign changes. Another important thing to keep in mind is when solving a particular case (say 2x > 1), one should take the intersection of both the inequality and 2x > 1. (that is, both the inequalities should satisfy together).
To confirm the obtained inequalities, one can put the values obtained from the final answer into the question. Example, we got 1
Complete step-by-step answer:
Thus, we should solve two cases concerning logarithm bases separately. (namely, 2x>1 and 2x<1)
Case 1: 2x > 1
$\begin{align}
& {{\log }_{2x}}({{x}^{2}}-5x+6)<1 \\
& {{\log }_{2x}}({{x}^{2}}-5x+6)<{{\log }_{2x}}(2x) \\
\end{align}$
Here, we don’t have to change the inequality sign since, 2x > 1,
$\begin{align}
& {{x}^{2}}-5x+6<2x \\
& {{x}^{2}}-7x+6<0 \\
& (x-1)(x-6)<0\text{ -- (1)} \\
\end{align}$
From (1), we have 1 < x < 6 -- (A)
Also, since, 2x > 1
We have, x > $\dfrac{1}{2}\text{ -- (B)}$
Thus, we need to satisfy (A) and (B) together, since for Case 1 to be true, both these conditions should be true.
Thus, doing so, we would have,
1 < x < 6 (Since, this inequality satisfies both (A) and (B) both together).
Case 2: 2x < 1
$\begin{align}
& {{\log }_{2x}}({{x}^{2}}-5x+6)<1 \\
& {{\log }_{2x}}({{x}^{2}}-5x+6)<{{\log }_{2x}}(2x) \\
\end{align}$
Here, we have to change the inequality sign since, 2x < 1,
$\begin{align}
& {{x}^{2}}-5x+6>2x \\
& {{x}^{2}}-7x+6>0 \\
& (x-1)(x-6)>0\text{ -- (2)} \\
\end{align}$
From (2), we have, x < 1 and x > 6 -- (C)
Further, we also have, 2x < 1
So, x < $\dfrac{1}{2}\text{ -- (D)}$
Thus, we need to satisfy (C) and (D) together, since for Case 2 to be true, both these conditions should be true.
Thus, doing so, we would have,
x < $\dfrac{1}{2}$(Since, this inequality satisfies both (C) and (D) both together)
Combining the inequalities from Case 1 and Case 2, we get,
1 < x < 6 -- (I) or
x < $\dfrac{1}{2}$ -- (II)
Thus, (I) and (II) satisfy the above inequality in the problem
Note: A common mistake made is not considering case 2, where 2x < 1. Thus, it is important to remember that when solving logarithm inequalities, when the logarithm base is less than 1, the inequality sign changes. Another important thing to keep in mind is when solving a particular case (say 2x > 1), one should take the intersection of both the inequality and 2x > 1. (that is, both the inequalities should satisfy together).
To confirm the obtained inequalities, one can put the values obtained from the final answer into the question. Example, we got 1
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE
Discuss the main reasons for poverty in India
A Paragraph on Pollution in about 100-150 Words
Explain the Treaty of Vienna of 1815 class 10 social science CBSE
What is the past participle of wear Is it worn or class 10 english CBSE