
Solve the following inequality:
$\left| {\dfrac{{2x - 1}}{{x - 1}}} \right| > 2$
Answer
486.6k+ views
Hint: First we will split the modulus function over the inequality. That is we will take once the positive value of the modulus function, then the negative value for the modulus function over the inequality. Then on solving the two inequalities we will get two answers. Then, by comparing the two answers we will get the more appropriate and valid answer for our given question.
Complete step-by-step answer:
Now, the given inequality is,
$\left| {\dfrac{{2x - 1}}{{x - 1}}} \right| > 2$
Now, we will take the positive value for the modulus function and once negative value.
Therefore, first taking the positive value, we get,
$\left( {\dfrac{{2x - 1}}{{x - 1}}} \right) > 2$
Subtracting $2$ from both sides of the inequality, we get,
$ \Rightarrow \dfrac{{2x - 1}}{{x - 1}} - 2 > 0$
Now, taking LCM on left hand side, we get,
$ \Rightarrow \dfrac{{2x - 1 - 2\left( {x - 1} \right)}}{{x - 1}} > 0$
Now, opening the brackets and simplifying, we get,
$ \Rightarrow \dfrac{{2x - 1 - 2x + 2}}{{x - 1}} > 0$
$ \Rightarrow \dfrac{1}{{x - 1}} > 0$
Therefore, here for $\dfrac{1}{{x - 1}}$ to be greater than $0$, $x - 1$ must be greater than $0$.
That is, $x - 1 > 0$
$ \Rightarrow x > 1$
We can write it as, $x \in \left( {1,\infty } \right) - - - \left( 1 \right)$
Now, taking the negative value of the modulus function, we get,
$ - \left( {\dfrac{{2x - 1}}{{x - 1}}} \right) > 2$
$ \Rightarrow \left( {\dfrac{{ - 2x + 1}}{{x - 1}}} \right) > 2$
Subtracting $2$ from both sides of the inequality, we get,
$ \Rightarrow \left( {\dfrac{{ - 2x + 1}}{{x - 1}}} \right) - 2 > 0$
Now, taking LCM on left hand side, we get,
$ \Rightarrow \dfrac{{ - 2x + 1 - 2\left( {x - 1} \right)}}{{x - 1}} > 0$
Now, opening the brackets and simplifying, we get,
$ \Rightarrow \dfrac{{ - 2x + 1 - 2x + 2}}{{x - 1}} > 0$
$ \Rightarrow \dfrac{{ - 4x + 3}}{{x - 1}} > 0$
Taking $ - 1$ common from the numerator, we get,
$ \Rightarrow \dfrac{{ - (4x - 3)}}{{x - 1}} > 0$
Now, multiplying both sides with $ - 1$, we get,
$ \Rightarrow \dfrac{{4x - 3}}{{x - 1}} < 0$
[Since, multiplying $ - 1$ over the inequality changes the direction of the inequality]
$ \Rightarrow \dfrac{{x - \dfrac{3}{4}}}{{x - 1}} < 0$
Since, here $x - 1 \ne 0$.
So, we can multiply both sides of the inequality by $x - 1$.
Therefore, we get,
$ \Rightarrow \left( {x - \dfrac{3}{4}} \right)\left( {x - 1} \right) < 0$
Now, using the method of interval over the real line, we get,
Since, the inequality is less than $0$, so we will take the negative region in the real line.
Therefore, $\dfrac{3}{4} < x < 1$.
We can also write it as, $x \in \left( {\dfrac{3}{4},1} \right) - - - \left( 2 \right)$
Therefore, from $\left( 1 \right)$ and $\left( 2 \right)$, we can say that the most appropriate region where it satisfies the inequality is,
$(\dfrac{3}{4}, 1)$ or $ {1,\infty } \right)$
Note: Here to solve the problem, we have taken the value of modulus function once positive and one negative. But we can also do the same by converting the inequality directly, but taking the positive value and negative value of the number on the right hand side, that is,
$\left( {\dfrac{{2x - 1}}{{x - 1}}} \right) > 2$ and $\left( {\dfrac{{2x - 1}}{{x - 1}}} \right) < - 2$, and then solve accordingly. This will make the calculations much easier.
Complete step-by-step answer:
Now, the given inequality is,
$\left| {\dfrac{{2x - 1}}{{x - 1}}} \right| > 2$
Now, we will take the positive value for the modulus function and once negative value.
Therefore, first taking the positive value, we get,
$\left( {\dfrac{{2x - 1}}{{x - 1}}} \right) > 2$
Subtracting $2$ from both sides of the inequality, we get,
$ \Rightarrow \dfrac{{2x - 1}}{{x - 1}} - 2 > 0$
Now, taking LCM on left hand side, we get,
$ \Rightarrow \dfrac{{2x - 1 - 2\left( {x - 1} \right)}}{{x - 1}} > 0$
Now, opening the brackets and simplifying, we get,
$ \Rightarrow \dfrac{{2x - 1 - 2x + 2}}{{x - 1}} > 0$
$ \Rightarrow \dfrac{1}{{x - 1}} > 0$
Therefore, here for $\dfrac{1}{{x - 1}}$ to be greater than $0$, $x - 1$ must be greater than $0$.
That is, $x - 1 > 0$
$ \Rightarrow x > 1$
We can write it as, $x \in \left( {1,\infty } \right) - - - \left( 1 \right)$
Now, taking the negative value of the modulus function, we get,
$ - \left( {\dfrac{{2x - 1}}{{x - 1}}} \right) > 2$
$ \Rightarrow \left( {\dfrac{{ - 2x + 1}}{{x - 1}}} \right) > 2$
Subtracting $2$ from both sides of the inequality, we get,
$ \Rightarrow \left( {\dfrac{{ - 2x + 1}}{{x - 1}}} \right) - 2 > 0$
Now, taking LCM on left hand side, we get,
$ \Rightarrow \dfrac{{ - 2x + 1 - 2\left( {x - 1} \right)}}{{x - 1}} > 0$
Now, opening the brackets and simplifying, we get,
$ \Rightarrow \dfrac{{ - 2x + 1 - 2x + 2}}{{x - 1}} > 0$
$ \Rightarrow \dfrac{{ - 4x + 3}}{{x - 1}} > 0$
Taking $ - 1$ common from the numerator, we get,
$ \Rightarrow \dfrac{{ - (4x - 3)}}{{x - 1}} > 0$
Now, multiplying both sides with $ - 1$, we get,
$ \Rightarrow \dfrac{{4x - 3}}{{x - 1}} < 0$
[Since, multiplying $ - 1$ over the inequality changes the direction of the inequality]
$ \Rightarrow \dfrac{{x - \dfrac{3}{4}}}{{x - 1}} < 0$
Since, here $x - 1 \ne 0$.
So, we can multiply both sides of the inequality by $x - 1$.
Therefore, we get,
$ \Rightarrow \left( {x - \dfrac{3}{4}} \right)\left( {x - 1} \right) < 0$
Now, using the method of interval over the real line, we get,
Since, the inequality is less than $0$, so we will take the negative region in the real line.
Therefore, $\dfrac{3}{4} < x < 1$.
We can also write it as, $x \in \left( {\dfrac{3}{4},1} \right) - - - \left( 2 \right)$
Therefore, from $\left( 1 \right)$ and $\left( 2 \right)$, we can say that the most appropriate region where it satisfies the inequality is,
$(\dfrac{3}{4}, 1)$ or $ {1,\infty } \right)$
Note: Here to solve the problem, we have taken the value of modulus function once positive and one negative. But we can also do the same by converting the inequality directly, but taking the positive value and negative value of the number on the right hand side, that is,
$\left( {\dfrac{{2x - 1}}{{x - 1}}} \right) > 2$ and $\left( {\dfrac{{2x - 1}}{{x - 1}}} \right) < - 2$, and then solve accordingly. This will make the calculations much easier.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

