
Solve the following for x:
$\dfrac{1}{2a+b+2x}=\dfrac{1}{2a}+\dfrac{1}{b}+\dfrac{1}{2x}$.
Answer
593.1k+ views
Hint: Subtract $\dfrac{1}{2a}$ from both the sides of the provided equation. Now, take L.C.M on both sides and simplify the equation. Take the common terms together by taking all the terms to L.H.S. and write the overall equation as a product of several terms containing ‘x’. Substitute each term, containing ‘x’, equal to 0 and find the value of x.
Complete step-by-step answer:
We have been provided with the equation: $\dfrac{1}{2a+b+2x}=\dfrac{1}{2a}+\dfrac{1}{b}+\dfrac{1}{2x}$.
Now, subtracting $\dfrac{1}{2a}$ from both the sides of the equation, we get,
$\begin{align}
& \dfrac{1}{2a+b+2x}-\dfrac{1}{2a}=\dfrac{1}{2a}+\dfrac{1}{b}+\dfrac{1}{2x}-\dfrac{1}{2a} \\
& \Rightarrow \dfrac{1}{2a+b+2x}-\dfrac{1}{2a}=\dfrac{1}{b}+\dfrac{1}{2x} \\
\end{align}$
Taking L.C.M on both sides, we get,
$\begin{align}
& \dfrac{2a-\left( 2a+b+2x \right)}{\left( 2a+b+2x \right)\left( 2a \right)}=\dfrac{2x+b}{2bx} \\
& \Rightarrow \dfrac{-\left( b+2x \right)}{\left( 2a+b+2x \right)\left( 2a \right)}=\dfrac{b+2x}{2bx} \\
\end{align}$
Taking all the terms to the L.H.S, we get,
$\begin{align}
& \dfrac{-\left( b+2x \right)}{\left( 2a+b+2x \right)\left( 2a \right)}-\dfrac{\left( b+2x \right)}{2bx}=0 \\
& \Rightarrow -\left( \dfrac{\left( b+2x \right)}{\left( 2a+b+2x \right)\left( 2a \right)}+\dfrac{\left( b+2x \right)}{2bx} \right)=0 \\
\end{align}$
Multiplying both the sides with (-1), we get,
$\dfrac{\left( b+2x \right)}{\left( 2a+b+2x \right)\left( 2a \right)}+\dfrac{\left( b+2x \right)}{2bx}=0$
Taking the numerator common, we get,
$\begin{align}
& \left( b+2x \right)\left( \dfrac{1}{\left( 2a+b+2x \right)\left( 2a \right)}+\dfrac{1}{2bx} \right)=0 \\
& \left( b+2x \right)\left( \dfrac{1}{\left( 2a+b+2x \right)a}+\dfrac{1}{bx} \right)=0 \\
\end{align}$
Taking L.C.M on the L.H.S, we get,
\[\begin{align}
& \left( b+2x \right)\left( \dfrac{bx+\left( 2a+b+2x \right)a}{\left( 2a+b+2x \right)a} \right)=0 \\
& \Rightarrow \left( b+2x \right)\left( \dfrac{bx+2{{a}^{2}}+ab+2ax}{\left( 2a+b+2x \right)a} \right)=0 \\
& \Rightarrow \left( b+2x \right)\left( \dfrac{\left( 2{{a}^{2}}+ab \right)+\left( 2ax+bx \right)}{\left( 2a+b+2x \right)a} \right)=0 \\
& \Rightarrow \left( b+2x \right)\left( \dfrac{a\left( 2a+b \right)+x\left( 2a+b \right)}{\left( 2a+b+2x \right)a} \right)=0 \\
& \Rightarrow \left( b+2x \right)\left( \dfrac{\left( 2a+b \right)\left( a+x \right)}{\left( 2a+b+2x \right)a} \right)=0 \\
\end{align}\]
Now, multiplying both sides with \[\left( 2a+b+2x \right)a\], we get,
\[\left( b+2x \right)\left( 2a+b \right)\left( a+x \right)=0\]
Dividing both sides by (2a + b), we have,
\[\left( b+2x \right)\left( a+x \right)=0\]
Substituting the terms, containing ‘x’, equal to 0, we get,
\[\begin{align}
& \left( a+x \right)=0\text{ or }\left( b+2x \right)=0 \\
& \Rightarrow x=-a\text{ or }2x=-b \\
& \Rightarrow x=-a\text{ or }x=\dfrac{-b}{2} \\
\end{align}\]
Note: One may note that we can also solve this question by directly taking the L.C.M in R.H.S without subtracting $\dfrac{1}{2a}$ from each side. The next step will be cross-multiplication and then taking the common terms together. Finally substituting all the terms containing ‘x’ equal to 0, we will get the answer. But the main problem we will face in this process is that we will get so many terms on cross-multiplication, which may be confusing while we are grouping them.
Complete step-by-step answer:
We have been provided with the equation: $\dfrac{1}{2a+b+2x}=\dfrac{1}{2a}+\dfrac{1}{b}+\dfrac{1}{2x}$.
Now, subtracting $\dfrac{1}{2a}$ from both the sides of the equation, we get,
$\begin{align}
& \dfrac{1}{2a+b+2x}-\dfrac{1}{2a}=\dfrac{1}{2a}+\dfrac{1}{b}+\dfrac{1}{2x}-\dfrac{1}{2a} \\
& \Rightarrow \dfrac{1}{2a+b+2x}-\dfrac{1}{2a}=\dfrac{1}{b}+\dfrac{1}{2x} \\
\end{align}$
Taking L.C.M on both sides, we get,
$\begin{align}
& \dfrac{2a-\left( 2a+b+2x \right)}{\left( 2a+b+2x \right)\left( 2a \right)}=\dfrac{2x+b}{2bx} \\
& \Rightarrow \dfrac{-\left( b+2x \right)}{\left( 2a+b+2x \right)\left( 2a \right)}=\dfrac{b+2x}{2bx} \\
\end{align}$
Taking all the terms to the L.H.S, we get,
$\begin{align}
& \dfrac{-\left( b+2x \right)}{\left( 2a+b+2x \right)\left( 2a \right)}-\dfrac{\left( b+2x \right)}{2bx}=0 \\
& \Rightarrow -\left( \dfrac{\left( b+2x \right)}{\left( 2a+b+2x \right)\left( 2a \right)}+\dfrac{\left( b+2x \right)}{2bx} \right)=0 \\
\end{align}$
Multiplying both the sides with (-1), we get,
$\dfrac{\left( b+2x \right)}{\left( 2a+b+2x \right)\left( 2a \right)}+\dfrac{\left( b+2x \right)}{2bx}=0$
Taking the numerator common, we get,
$\begin{align}
& \left( b+2x \right)\left( \dfrac{1}{\left( 2a+b+2x \right)\left( 2a \right)}+\dfrac{1}{2bx} \right)=0 \\
& \left( b+2x \right)\left( \dfrac{1}{\left( 2a+b+2x \right)a}+\dfrac{1}{bx} \right)=0 \\
\end{align}$
Taking L.C.M on the L.H.S, we get,
\[\begin{align}
& \left( b+2x \right)\left( \dfrac{bx+\left( 2a+b+2x \right)a}{\left( 2a+b+2x \right)a} \right)=0 \\
& \Rightarrow \left( b+2x \right)\left( \dfrac{bx+2{{a}^{2}}+ab+2ax}{\left( 2a+b+2x \right)a} \right)=0 \\
& \Rightarrow \left( b+2x \right)\left( \dfrac{\left( 2{{a}^{2}}+ab \right)+\left( 2ax+bx \right)}{\left( 2a+b+2x \right)a} \right)=0 \\
& \Rightarrow \left( b+2x \right)\left( \dfrac{a\left( 2a+b \right)+x\left( 2a+b \right)}{\left( 2a+b+2x \right)a} \right)=0 \\
& \Rightarrow \left( b+2x \right)\left( \dfrac{\left( 2a+b \right)\left( a+x \right)}{\left( 2a+b+2x \right)a} \right)=0 \\
\end{align}\]
Now, multiplying both sides with \[\left( 2a+b+2x \right)a\], we get,
\[\left( b+2x \right)\left( 2a+b \right)\left( a+x \right)=0\]
Dividing both sides by (2a + b), we have,
\[\left( b+2x \right)\left( a+x \right)=0\]
Substituting the terms, containing ‘x’, equal to 0, we get,
\[\begin{align}
& \left( a+x \right)=0\text{ or }\left( b+2x \right)=0 \\
& \Rightarrow x=-a\text{ or }2x=-b \\
& \Rightarrow x=-a\text{ or }x=\dfrac{-b}{2} \\
\end{align}\]
Note: One may note that we can also solve this question by directly taking the L.C.M in R.H.S without subtracting $\dfrac{1}{2a}$ from each side. The next step will be cross-multiplication and then taking the common terms together. Finally substituting all the terms containing ‘x’ equal to 0, we will get the answer. But the main problem we will face in this process is that we will get so many terms on cross-multiplication, which may be confusing while we are grouping them.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

