
Solve the following for $x$:
$3{\tan ^{ - 1}}\left( x \right) + {\cot ^{ - 1}}\left( x \right) = \pi $
Answer
491.1k+ views
Hint: we are asked to solve $3{\tan ^{ - 1}}\left( x \right) + {\cot ^{ - 1}}\left( x \right) = \pi $. Here, we will convert the equation in one trigonometric function using identity and then we will simplify to obtain the required answer.
Formula to be used:
The required trigonometric identity that is used to solve the given problem is as follows.
$\tan x = \cot \left( {\dfrac{\pi }{2} - x} \right)$
Complete step by step answer:
The given equation is
$3{\tan ^{ - 1}}\left( x \right) + {\cot ^{ - 1}}\left( x \right) = \pi $
$ \Rightarrow 2{\tan ^{ - 1}}\left( x \right) + {\tan ^{ - 1}}\left( x \right) + {\cot ^{ - 1}}\left( x \right) = \pi $
Before getting into next step, we shall consider ${\tan ^{ - 1}}\left( x \right) = p$
Let ${\tan ^{ - 1}}\left( x \right) = p$. Then, $\tan p = x$.
$\tan p = \cot \left( {\dfrac{\pi }{2} - p} \right)$ (Here we have substituted the trigonometric identity $\tan x = \cot \left( {\dfrac{\pi }{2} - x} \right)$)
$ \Rightarrow x = \cot \left( {\dfrac{\pi }{2} - p} \right)$ (We have substituted $\tan p = x$)
$ \Rightarrow {\cot ^{ - 1}}x = \dfrac{\pi }{2} - p$
$ \Rightarrow {\tan ^{ - 1}}\left( x \right) + {\cot ^{ - 1}}\left( x \right) = p + \dfrac{\pi }{2} - p$ (Here we have added both the inverse of tangent and cotangent)
$ \Rightarrow {\tan ^{ - 1}}\left( x \right) + {\cot ^{ - 1}}\left( x \right) = \dfrac{\pi }{2}$ ……..$\left( 1 \right)$
Now, we shall get into our solution.
$3{\tan ^{ - 1}}\left( x \right) + {\cot ^{ - 1}}\left( x \right) = \pi $
$ \Rightarrow 2{\tan ^{ - 1}}\left( x \right) + {\tan ^{ - 1}}\left( x \right) + {\cot ^{ - 1}}\left( x \right) = \pi $
$ \Rightarrow 2{\tan ^{ - 1}}\left( x \right) + \dfrac{\pi }{2} = \pi $ (Here we have substituted the equation $\left( 1 \right)$)
$ \Rightarrow 2{\tan ^{ - 1}}\left( x \right) = \pi - \dfrac{\pi }{2}$
$ \Rightarrow 2{\tan ^{ - 1}}\left( x \right) = \dfrac{\pi }{2}$
$ \Rightarrow {\tan ^{ - 1}}\left( x \right) = \dfrac{\pi }{2} \times \dfrac{1}{2}$
$ \Rightarrow {\tan ^{ - 1}}\left( x \right) = \dfrac{\pi }{4}$
$ \Rightarrow x = \tan \dfrac{\pi }{4}$
$ \Rightarrow x = 1$ (We know that $\tan \dfrac{\pi }{4} = 1$)
Hence $x = 1$ is the desired solution for the given equation.
Note:
Here students should not that $ \Rightarrow {\tan ^{ - 1}}\left( x \right) + {\cot ^{ - 1}}\left( x \right) = \dfrac{\pi }{2}$ this expression is also an identity. So we can directly use it to simplify the calculation.
Formula to be used:
The required trigonometric identity that is used to solve the given problem is as follows.
$\tan x = \cot \left( {\dfrac{\pi }{2} - x} \right)$
Complete step by step answer:
The given equation is
$3{\tan ^{ - 1}}\left( x \right) + {\cot ^{ - 1}}\left( x \right) = \pi $
$ \Rightarrow 2{\tan ^{ - 1}}\left( x \right) + {\tan ^{ - 1}}\left( x \right) + {\cot ^{ - 1}}\left( x \right) = \pi $
Before getting into next step, we shall consider ${\tan ^{ - 1}}\left( x \right) = p$
Let ${\tan ^{ - 1}}\left( x \right) = p$. Then, $\tan p = x$.
$\tan p = \cot \left( {\dfrac{\pi }{2} - p} \right)$ (Here we have substituted the trigonometric identity $\tan x = \cot \left( {\dfrac{\pi }{2} - x} \right)$)
$ \Rightarrow x = \cot \left( {\dfrac{\pi }{2} - p} \right)$ (We have substituted $\tan p = x$)
$ \Rightarrow {\cot ^{ - 1}}x = \dfrac{\pi }{2} - p$
$ \Rightarrow {\tan ^{ - 1}}\left( x \right) + {\cot ^{ - 1}}\left( x \right) = p + \dfrac{\pi }{2} - p$ (Here we have added both the inverse of tangent and cotangent)
$ \Rightarrow {\tan ^{ - 1}}\left( x \right) + {\cot ^{ - 1}}\left( x \right) = \dfrac{\pi }{2}$ ……..$\left( 1 \right)$
Now, we shall get into our solution.
$3{\tan ^{ - 1}}\left( x \right) + {\cot ^{ - 1}}\left( x \right) = \pi $
$ \Rightarrow 2{\tan ^{ - 1}}\left( x \right) + {\tan ^{ - 1}}\left( x \right) + {\cot ^{ - 1}}\left( x \right) = \pi $
$ \Rightarrow 2{\tan ^{ - 1}}\left( x \right) + \dfrac{\pi }{2} = \pi $ (Here we have substituted the equation $\left( 1 \right)$)
$ \Rightarrow 2{\tan ^{ - 1}}\left( x \right) = \pi - \dfrac{\pi }{2}$
$ \Rightarrow 2{\tan ^{ - 1}}\left( x \right) = \dfrac{\pi }{2}$
$ \Rightarrow {\tan ^{ - 1}}\left( x \right) = \dfrac{\pi }{2} \times \dfrac{1}{2}$
$ \Rightarrow {\tan ^{ - 1}}\left( x \right) = \dfrac{\pi }{4}$
$ \Rightarrow x = \tan \dfrac{\pi }{4}$
$ \Rightarrow x = 1$ (We know that $\tan \dfrac{\pi }{4} = 1$)
Hence $x = 1$ is the desired solution for the given equation.
Note:
Here students should not that $ \Rightarrow {\tan ^{ - 1}}\left( x \right) + {\cot ^{ - 1}}\left( x \right) = \dfrac{\pi }{2}$ this expression is also an identity. So we can directly use it to simplify the calculation.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

