
Solve the following for $x$:
$3{\tan ^{ - 1}}\left( x \right) + {\cot ^{ - 1}}\left( x \right) = \pi $
Answer
476.1k+ views
Hint: we are asked to solve $3{\tan ^{ - 1}}\left( x \right) + {\cot ^{ - 1}}\left( x \right) = \pi $. Here, we will convert the equation in one trigonometric function using identity and then we will simplify to obtain the required answer.
Formula to be used:
The required trigonometric identity that is used to solve the given problem is as follows.
$\tan x = \cot \left( {\dfrac{\pi }{2} - x} \right)$
Complete step by step answer:
The given equation is
$3{\tan ^{ - 1}}\left( x \right) + {\cot ^{ - 1}}\left( x \right) = \pi $
$ \Rightarrow 2{\tan ^{ - 1}}\left( x \right) + {\tan ^{ - 1}}\left( x \right) + {\cot ^{ - 1}}\left( x \right) = \pi $
Before getting into next step, we shall consider ${\tan ^{ - 1}}\left( x \right) = p$
Let ${\tan ^{ - 1}}\left( x \right) = p$. Then, $\tan p = x$.
$\tan p = \cot \left( {\dfrac{\pi }{2} - p} \right)$ (Here we have substituted the trigonometric identity $\tan x = \cot \left( {\dfrac{\pi }{2} - x} \right)$)
$ \Rightarrow x = \cot \left( {\dfrac{\pi }{2} - p} \right)$ (We have substituted $\tan p = x$)
$ \Rightarrow {\cot ^{ - 1}}x = \dfrac{\pi }{2} - p$
$ \Rightarrow {\tan ^{ - 1}}\left( x \right) + {\cot ^{ - 1}}\left( x \right) = p + \dfrac{\pi }{2} - p$ (Here we have added both the inverse of tangent and cotangent)
$ \Rightarrow {\tan ^{ - 1}}\left( x \right) + {\cot ^{ - 1}}\left( x \right) = \dfrac{\pi }{2}$ ……..$\left( 1 \right)$
Now, we shall get into our solution.
$3{\tan ^{ - 1}}\left( x \right) + {\cot ^{ - 1}}\left( x \right) = \pi $
$ \Rightarrow 2{\tan ^{ - 1}}\left( x \right) + {\tan ^{ - 1}}\left( x \right) + {\cot ^{ - 1}}\left( x \right) = \pi $
$ \Rightarrow 2{\tan ^{ - 1}}\left( x \right) + \dfrac{\pi }{2} = \pi $ (Here we have substituted the equation $\left( 1 \right)$)
$ \Rightarrow 2{\tan ^{ - 1}}\left( x \right) = \pi - \dfrac{\pi }{2}$
$ \Rightarrow 2{\tan ^{ - 1}}\left( x \right) = \dfrac{\pi }{2}$
$ \Rightarrow {\tan ^{ - 1}}\left( x \right) = \dfrac{\pi }{2} \times \dfrac{1}{2}$
$ \Rightarrow {\tan ^{ - 1}}\left( x \right) = \dfrac{\pi }{4}$
$ \Rightarrow x = \tan \dfrac{\pi }{4}$
$ \Rightarrow x = 1$ (We know that $\tan \dfrac{\pi }{4} = 1$)
Hence $x = 1$ is the desired solution for the given equation.
Note:
Here students should not that $ \Rightarrow {\tan ^{ - 1}}\left( x \right) + {\cot ^{ - 1}}\left( x \right) = \dfrac{\pi }{2}$ this expression is also an identity. So we can directly use it to simplify the calculation.
Formula to be used:
The required trigonometric identity that is used to solve the given problem is as follows.
$\tan x = \cot \left( {\dfrac{\pi }{2} - x} \right)$
Complete step by step answer:
The given equation is
$3{\tan ^{ - 1}}\left( x \right) + {\cot ^{ - 1}}\left( x \right) = \pi $
$ \Rightarrow 2{\tan ^{ - 1}}\left( x \right) + {\tan ^{ - 1}}\left( x \right) + {\cot ^{ - 1}}\left( x \right) = \pi $
Before getting into next step, we shall consider ${\tan ^{ - 1}}\left( x \right) = p$
Let ${\tan ^{ - 1}}\left( x \right) = p$. Then, $\tan p = x$.
$\tan p = \cot \left( {\dfrac{\pi }{2} - p} \right)$ (Here we have substituted the trigonometric identity $\tan x = \cot \left( {\dfrac{\pi }{2} - x} \right)$)
$ \Rightarrow x = \cot \left( {\dfrac{\pi }{2} - p} \right)$ (We have substituted $\tan p = x$)
$ \Rightarrow {\cot ^{ - 1}}x = \dfrac{\pi }{2} - p$
$ \Rightarrow {\tan ^{ - 1}}\left( x \right) + {\cot ^{ - 1}}\left( x \right) = p + \dfrac{\pi }{2} - p$ (Here we have added both the inverse of tangent and cotangent)
$ \Rightarrow {\tan ^{ - 1}}\left( x \right) + {\cot ^{ - 1}}\left( x \right) = \dfrac{\pi }{2}$ ……..$\left( 1 \right)$
Now, we shall get into our solution.
$3{\tan ^{ - 1}}\left( x \right) + {\cot ^{ - 1}}\left( x \right) = \pi $
$ \Rightarrow 2{\tan ^{ - 1}}\left( x \right) + {\tan ^{ - 1}}\left( x \right) + {\cot ^{ - 1}}\left( x \right) = \pi $
$ \Rightarrow 2{\tan ^{ - 1}}\left( x \right) + \dfrac{\pi }{2} = \pi $ (Here we have substituted the equation $\left( 1 \right)$)
$ \Rightarrow 2{\tan ^{ - 1}}\left( x \right) = \pi - \dfrac{\pi }{2}$
$ \Rightarrow 2{\tan ^{ - 1}}\left( x \right) = \dfrac{\pi }{2}$
$ \Rightarrow {\tan ^{ - 1}}\left( x \right) = \dfrac{\pi }{2} \times \dfrac{1}{2}$
$ \Rightarrow {\tan ^{ - 1}}\left( x \right) = \dfrac{\pi }{4}$
$ \Rightarrow x = \tan \dfrac{\pi }{4}$
$ \Rightarrow x = 1$ (We know that $\tan \dfrac{\pi }{4} = 1$)
Hence $x = 1$ is the desired solution for the given equation.
Note:
Here students should not that $ \Rightarrow {\tan ^{ - 1}}\left( x \right) + {\cot ^{ - 1}}\left( x \right) = \dfrac{\pi }{2}$ this expression is also an identity. So we can directly use it to simplify the calculation.
Recently Updated Pages
Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Master Class 9 English: Engaging Questions & Answers for Success

Master Class 9 Science: Engaging Questions & Answers for Success

Class 9 Question and Answer - Your Ultimate Solutions Guide

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

